\(4x^2+12x+10\ge1\)

b. \(25x^2+5x+1\g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Câu a : \(4x^2+12x+10=\left(4x^2+12x+9\right)+1=\left(2x+3\right)^2+1\ge1\)

Câu b : \(25x^2+5x+1=\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(5x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

13 tháng 8 2018

\(4x^2+12x+10=\left(4x^2+12x+9\right)+1=\left(2x+3\right)^2+1\ge1\)

\(25x^2+5x+1=\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(5x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

27 tháng 7 2018

Những hằng đẳng thức đáng nhớ (Tiếp 1)

27 tháng 7 2018

Những hằng đẳng thức đáng nhớ (Tiếp 1)

7 tháng 10 2018

a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)

b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)

c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)

\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)

e)\(6x^3-17x^2+14x-3\)

Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)

\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)

\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)

Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)

Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)

7 tháng 10 2018

h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)

13 tháng 8 2018

giải bất phương trình

a: =>-4x>16

=>x<-4

c: =>20x-25<=21-3x

=>23x<=46

=>x<=2

d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

=>40x-100-90x+30<36-12x-30x+15

=>-50x-70<-42x+51

=>-8x<121

=>x>-121/8

9 tháng 12 2018

a, 15x3y5z : 5x2y3 = 3xy2z.

b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).

c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)

d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.

19 tháng 8 2018

a/

\(\left(4x+1\right)^2\ge1\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1\ge1\\4x+1\le-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

Vậy.....

b/ \(\left|2x+3\right|\ge\dfrac{1}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}2x+3\ge\dfrac{1}{2}\\2x+3\le-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le-\dfrac{7}{4}\end{matrix}\right.\)

Vậy......

15 tháng 4 2017

Dùng phương pháp biến đổi tương đương nhé!!!

Ta có : \(\dfrac{1}{1+a^2}\) + \(\dfrac{1}{1+b^2}\) \(\ge\) \(\dfrac{2}{1+ab}\)

<=>( \(\dfrac{1}{1+a^2}\) - \(\dfrac{1}{1+ab}\) ) + ( \(\dfrac{1}{1+b^2}\) - \(\dfrac{1}{1+ab}\) ) \(\ge\) 0

<=> \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left(a+ab^2-b-a^2b\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left[ab\left(b-a\right)-\left(b-a\right)\right]\) \(\ge\) 0

<=> \(\left(b-a\right)\left(b-a\right)\left(ab-1\right)\) \(\ge\) 0

<=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0 (1)

\(\left\{{}\begin{matrix}\left(b-a\right)^2\ge0\\ab-1\ge0\end{matrix}\right.\) ( vì ab \(\ge\)1)

=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0

=> (1) luôn đúng

Vậy đpcm ....

17 tháng 4 2017

Ta có: \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)

\(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

BĐT cuối cùng đúng vì \(a.b\ge1\Rightarrowđpcm\)

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b