\(81^8-27^{10}-9^{14}\)chia hết cho 71

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

\(=\left(3^4\right)^8-\left(3^3\right)^{10}-\left(3^2\right)^{14}\)

\(=3^{32}-3^{30}-3^{28}\)

\(=3^{28}.\left(3^4-3^2-1\right)\)

\(=3^{28}.71_{ }\)

=> \(81^8-27^{10}-9^{14}\) chia hết cho 71

6 tháng 7 2016

a) 106 - 57

= 26 . 56 - 57

= 56 . (26 - 5)

= 56 . (64 - 5)

= 56 . 59 chia hết cho 59

=> đpcm

b) 817 - 279 - 913

= (34)7 - (33)9 - (32)13

= 328 - 327 - 326

= 326 .(32 - 3 - 1)

= 326 . (9 - 3 - 1)

= 324 . 32 . 5

= 324 . 9 . 5

= 324 . 45 chia hết cho 45

=> đpcm

c) 87 - 218

= (23)7 - 218

= 221 - 218

= 218 . (23 - 1)

= 218 (8 - 1)

= 217 . 2 . 7

= 217 . 14 chia hết cho 14

=> đpcm

d) 109 + 108 + 107

= 107 . (102 + 10 + 1)

= 57 . 27 . (100 + 10 + 1)

= 57 . 26 . 2 . 111

= 57 . 26 . 222 chia hết cho 222

=> đpcm

1 tháng 1 2018

Có:

+) \(81^4\equiv60\left(mod71\right)\)

\(\left(81^4\right)^2\equiv60^2\equiv50\left(mod71\right)\) (1)

+) \(27^5\equiv20\left(mod71\right)\)

\(\left(27^5\right)^2\equiv20^2\equiv45\left(mod71\right)\) (2)

+) \(9^7\equiv54\left(mod71\right)\)

\(\left(9^7\right)^2\equiv54^2\equiv5\left(mod71\right)\) (3)

Từ (1), (2), (3):

\(\Rightarrow81^8-27^{10}-9^{14}\equiv50-45-5\equiv0\left(mod71\right)\)

=> \(81^8-27^{10}-9^{14}⋮71\left(đpcm\right)\)

\(=3^{30}+3^{29}+3^{28}=3^{28}\left(3^2+3+1\right)=3^{28}\cdot13⋮13\)

13 tháng 12 2017

Ta có \(9^{34}-27^{22}+81^{16}=9^{34}-\left(3^3\right)^{22}+\left(9^2\right)^{16}\)

\(=9^{34}-3^{66}+9^{32}=9^{34}-9^{33}+9^{32}\)

\(=9^{32}\left(9^2-9+1\right)=9^{32}.73\)

\(=9^{31}.\left(8.73\right)=9^{31}.657⋮657\)

22 tháng 6 2017

b) 817 - 279 -913 chia hết cho 405

Ta có: 817 - 279 -913 = 328- 327-326

= 326(32-3-1)

= 326. 5 = 322. 405 chia hết cho 405 (đpcm)

22 tháng 6 2017

a)

\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\) chia hết cho 55

=>\(7^6+7^5-7^4\) chia hết cho 55