Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) S=32+34+...+3998+31000
S=(32+34)+[(36+38+310)+(312+314+316)....+(3996+3998+31000)]
S= 90+ [36. 91+312.6+...+3996. 91]
Vì 91 chia hết cho 7 nên: 36. 91+312.6+...+3996. 91 cũng chia hết cho 9
Mà 90 chia 7 dư 6 nên suy ra S cũng chia 7 dư 6
Vậy S chia 7 dư 6
Nếu đúng k cho mk nha
DO p là số nguyên tố lớn hơn 3 nên p có 2 dạng :3k+1,3k+2 hay p là số lẻ
với p =3k+1 thì p+5=3k+6=3(k+2) chia hết cho 3 (KTM)
Với p=3k+2 thì p+5=3k+7(là số nguyên tố)
p+7=3k+9=3(k+3) chia hết cho 3
Mặt khác k là số lẻ nên k+3 là số chẵn suy ra p+7 chia hết cho 2
Do (2,3)=1 suy ra p+7 chia hết cho 2*3=6
Bạn vào câu hỏi tương tự ý , hoặc là link này nhé :
chứng minh rằng: tích ba số tự nhiên liên tiếp đều chia hết cho 6
đặt tích 3 số tự nhiên liên tiếp là T a= a* [a+1] * [a+2]
chứng minh T chia hết cho 2 chỉ có 2 trường hợp
nếu a chia hết cho 2 a là số chẵn suy ra T chia hết
nếu a chia 2 dư 1 a la so le suy ra a + 1 chia hết cho 2 suy raT chia hết cho 2
chứng minh T chia hết cho 3 có 3 trường hợp
nếu a chia hết cho 3 suy ra T chia hết cho 3
nếu T chia 3 dư 1 suy ra a + 1 chia hết cho 3 suy ra T chia hết cho 3
nếu chia hết cho 3 dư 2 suy ra a+2 chia hết cho 3 suy ra T CHIA HẾT CHO 3
2 và 3 nguyên tố cùng nhau
suy ra T chia hết cho 2*3=6
1. nếu n lẻ thì n có dạng n= 2k +1
=> n+ 3= 2k + 4 chia hết cho 2
nếu n chãn thì n có dạng 2k
=> n+ 6 = 2k + 6 chia hết cho 2
=> (n+ 3) x( n+6) chia hết cho 2
2.a)
nếu n+ 1 chia hết cho 7 thì n+ 1 thuộc bội của 7
=> n+ 1 = { 7;14;21;28;35;...}
=> n={ 6;13;20;27;34;...}
b)
\(\frac{n+6}{n+8}=\frac{n+8-2}{n+8}\)\(=1-\frac{2}{n+8}\)
Để n+6 chia hết cho n+8 thì 2 phải chia hết cho n+8
=>n+8 thuộc ước của 2 => n+8={ -1;1;2;-2}
ta có nếu n+8 =-1=> n= -9(loại vì n là STN)
nếu n+8 =-2=> n= -10(loại vì n là STN)
nếu n+8 =1=> n= -7(loại vì n là STN)
nếu n+8 =2=> n= -6(loại vì n là STN)
vậy n+6 ko chia hết cho n+8 với mọi n là số tự nhiên
c)\(\frac{2n+3}{n+1}=\frac{2\left(n+1\right)+1}{n+1}=2+\frac{1}{n+1}\)
bậy để 2n+3 chia hết cho n+1 thì 1 phải chia hết cho n+1
=> n+1 thuộc ước của 1=> n+1={ 1;-1}
nếu n+1= 1 thì n+0 (chọn)
n+!= -1 thì n= -2(loại vì nlà STN)
vậy n=0 thì 2n+3 chia hết cho n+1
mik chỉ ms gặp bài này thôi
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24?
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Câu hỏi của Nguyen Huy Hoang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
P = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
=> P = (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
=> P = 1 . 3 + 22 (1 + 2) + 24 (1 + 2) + 26 (1 + 2)
=> P = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
=> P = 3(1 + 22 + 24 + 26)
=> P chia hết cho 3
Vậy P chia hết cho 3.
6 - 3 = 3
Chứng minh biểu thức trên là sai :v
6 - 3 = 3
sai rùi