Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6
=> Điều phải chứng minh
\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì :
- n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
- 5n(n-1)(n+1) ⋮ 5
=> (n5-n) ⋮5
=> Điều phải chứng minh
\(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)
Mà 3,5,8 nguyên tố cùng nhau nên :
\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)
=> Điều phải chứng minh
a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )
Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)
n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)
Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm )
b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )
= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]
= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )
= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )
n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)
5n( n - 1 )( n + 1 ) chia hết cho 5 (2)
Từ (1) và (2) => đpcm
c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )
Xét n4 - 5n2 + 4 (*)
Đặt t = n2
(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )
=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )
n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)
n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)
n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)
n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)
Từ (1), (2), (3) và (4) => đpcm
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
a: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\)
Vì đây là 5 số liên tiếp
nên A chia hết cho 5!
=>A chia hết cho 120
b: \(B=n^2\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1-3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=\left(2k-2\right)\left(2k+2\right)\cdot2k\)
\(=8k\left(k-1\right)\left(k+1\right)⋮48\)
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
a hình như lộn đề
b. a = - ( b + c)
\(\Leftrightarrow a^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)
\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)
chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^
a) Ta có : n3 + 3n2 + 2n
= n(n2 + 3n + 2)
= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)
b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299
= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)
= 31 + 25.31 + .. + 295.31
= 31(1 + 25 + ... + 295) \(⋮31\)(đpcm)
c) Ta có 49n + 77n - 29n - 1
= (49n - 1) + (77n - 29n)
= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm)
a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)
b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp
=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6
c, \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)
=>a^3+b^3+c^3=3abc