K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

a. $4\equiv 1\pmod 3$

$\Rightarrow 4^{20}\equiv 1\pmod 3$

$\Rightarrow 4^{20}-1\equiv 0\pmod 3$

Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)

b.

$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)

22 tháng 8 2021

Em ko hiểu ạ.

 

15 tháng 4 2022

\(A=\left(x+y\right)\left(x+3y\right)\left(x+5y\right)\left(x+7y\right)+16y^4\)

\(=\left(x^2+8xy+7y^2\right)\left(x^2+8xy+15y^2\right)+16y^4\)

\(=\left(x^2+8xy+7y^2\right)^2+8y^2\left(x^2+8xy+7y^2\right)+16y^4\)

\(=\left(x^2+8xy+7y^2+4y^2\right)^2=\left(x^2+8xy+11y^2\right)^2\)

-Vậy A là số chính phương với mọi x,y nguyên.

 

21 tháng 11 2019

Ta có: \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)(1)

Đặt \(x^2+10x+16=a\)

\(\Rightarrow\left(1\right)=a\left(a+8\right)+16\)

\(=a^2+8a+16=\left(a+4\right)^2\)(2)

Mà \(x^2+10x+16=a\)(theo cách đặt) nên :

\(\left(2\right)=\left(x^2+10x+20\right)^2\)(là bình phương của 1 số)

Vậy (x+2)(x+4)(x+6)(x+8)+16 là scp

15 tháng 8 2015

20 số nguyên liên tiếp có 6 số chia hết cho 3

→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

→ tổng 20 số chính phương liên tiếp chia 3 dư 2

15 tháng 8 2015

20 số nguyên liên tiếp có 6 số chia hết cho 3

→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

→ tổng 20 số chính phương liên tiếp chia 3 dư 2

15 tháng 8 2015

Cách làm thủ công nhất là gọi 20 số đó lần lượt là n^2;(n+1)^2...(n+19)^2 rồi tách ra phân tích thnàh 1 cái bình phương + 1 số <>0

26 tháng 1 2016

Co ai giup minh ko chang le newbie ko dc giup sao