K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔCAB cân tại C

mà CP là đường trung tuyến

nên CP\(\perp\)AB tại P

=>ΔPBC vuông tại P

Xét ΔCAB cân tại B có BN là đường trung tuyến

nên BN\(\perp\)AC tại N

=>ΔBNC vuông tại N

Xét tứ giác BPNC có \(\widehat{BPC}=\widehat{BNC}=90^0\)

nên BPNC là tứ giác nội tiếp đường tròn đường kính BC

=>B,P,N,C cùng thuộc đường tròn đường kính BC

=>\(R=\dfrac{BC}{2}=\dfrac{a}{2}\)

ΔPBC vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{BC}{2}=0,5a\)

Xét tứ giác BPNC có

\(\widehat{BPC}=\widehat{BNC}=90^0\)

=>BPNC là tứ giác nội tiếp

=>B,P,N,C cùng thuộc đường tròn đường kính BC

\(R=\dfrac{BC}{2}=MP=\dfrac{a}{2}\)

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

kuts đi cho xã hội nó trong😪

a: Xét tứ giác BMNC có

\(\widehat{BMC}=\widehat{BNC}=90^0\)

Do đó: BMNC là tứ giác nội tiếp

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

Tâm là trung điểm của BC

Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)