Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)
\(\Leftrightarrow3\sqrt{3x}=6\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)
Vậy \(S=\left\{\frac{4}{3}\right\}\)
+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{1,15\right\}\)
+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
\(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)
\(\Rightarrow\)\(\sqrt{x}-4< 0\)
\(\Leftrightarrow\)\(\sqrt{x}< 4\)
\(\Leftrightarrow\)\(x< 16\)
Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)
Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)
\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) (Đk: x \(\ge\)0)
<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)
<=> \(3\sqrt{3x}=6\)
<=> \(\sqrt{3x}=2\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)
<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)
\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)
<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
<=> \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)
<=> \(\sqrt{x}< 4\) <=> \(x< 16\)
Kết hợp với đk => S = {x|0 < x < 16}
1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
=> pt vô no
2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)
\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)
\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)
\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)
Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm
Câu 2:
ĐKXĐ: \(x\le3\)
\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))
\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)
\(\Leftrightarrow36x=-36\Rightarrow x=-1\)
Câu 3:
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)
\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)
Phương trình vô nghiệm
bạn giải theo delta nha :) mình vd một câu đó
\(1.x^2-11x+30=0\)
\(\Delta=\left(-11\right)^2-4.1.30=1>0\)
Do đó pt có 2 nghiệm phân biệt là:
\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)
a) \(\sqrt{\dfrac{9x^2}{25}}+\dfrac{1}{5}x\) (x<0)
=\(\dfrac{-3x}{5}+\dfrac{x}{5}\) (vì x<0)
=\(\dfrac{-2x}{5}\)
b)2xy\(\sqrt{\dfrac{9x^2}{y^6}}-\sqrt{\dfrac{49x^2}{y^2}}\) (x<0 , y>0)
=2xy\(\dfrac{-3x}{y^3}+\dfrac{7x}{y}\)(vì x<y<0)
=\(\dfrac{-6x}{y^2}+\dfrac{7xy}{y^2}\)
=\(\dfrac{7xy-6x}{y^2}\)
c) \(\dfrac{1}{ab}\sqrt{a^6\left(a-b\right)^2}\) (a<b<0)
=\(\dfrac{1}{ab}\sqrt{a^6}\sqrt{\left(a-b\right)^2}\)
=\(\dfrac{1}{ab}\left(-a^3\right)\left(b-a\right)\) (vì a<b<0)
=\(\dfrac{\left(a-b\right)a^3}{a-b}\)
=a3
Cảm ơn bạn Thu Trang nhiều nhé, sau này có gì giúp đỡ nhau nha.
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
\(A=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=4\sqrt{x}-\left(\sqrt{x}+3\right)\)
\(=3\sqrt{x}-3\)
\(B=\frac{\sqrt{\left(3x+2\right)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)
\(TH1:3x+2>0\Rightarrow B=1\)
\(TH2:3x+2< 0\Rightarrow B=-1\)
A <=> 4√x - [ ( (√x )^2 + 2√x3+ 3^2)*( √x -3)]/ (x-9)
<=> 4√x - [(√x+3)^2×(√x-3)]/( x-9)
<=> 4√x - [(√x+3)*(x-9)]/(x-9)
<=> 4√x - √x -3
<=> 3√x -3
b, <=> √[(3*x) ^2+2*3x*2+2^2]/(3x+2)
<=> √[( 3x+2)^2] /(3x+2)
<=> (3x+2)/(3x+2) = 1
vẫn có trường hợp >0 mà bn
min \(min\frac{x}{\sqrt{x}-2}voix>4\)