Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
vì 2n+1 \(⋮\)2n+1
=>2(2n+1)\(⋮\)2n+1
=>4n+2\(⋮\)2n+1
gọi UCLN(4n+1;4n+2)=d
=> 4n+2-4n+1\(⋮\)d
=>1\(⋮\)d
=> d \(\in\left\{\pm1\right\}\)
vậy 4n+1 và 2n+1 là 2 số nguyên tố cùng nhau
Ta gọi d là ước chung lớn nhất của 4n + 3 và 2n + 3 . Theo bài ra, ta có :
4n + 3 chia hết cho d
2n + 3 chia hết cho d
=> 4n + 3 chia hết cho d
4n + 6 chia hết cho d
=> (4n + 6) - (4n + 3) chia hết cho d
=> 3 chia hết cho d
=> d thuộc ước của 3
=> Ư(3)={1 ; 3}
Nếu 4n + 3 và 2n + 3 chia hết cho 3 thì nó ko là 2 số nguyên tố cùng nhau.
=> d = 1 ( ĐPCM )
TICK mình nhé !!!
gọi \(ƯCLN\left(2n+3;4n+8\right)=d\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\left(4n+8\right)-2\left(2n+3\right)⋮d\Rightarrow2⋮d}\)
\(\Rightarrow d=\left\{1;2\right\}\)
mà 2n+3 là số lẻ; 4n+8 là số chẵn nên d=1 => hai số nguyên tố cùng nhau
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Gọi ước chung của 2n + 3 và 4n + 8 là d
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\left(2n+3\right)⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
4n + 6 - 4n - 8 ⋮ d
2 ⋮ d
d \(\in\) Ư(2) = {1; 2)
Nếu d = 2 ⇒ 2n + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lí loại)
Vậy d = 1; hay 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau (đpcm)
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
Gọi ƯCLN của 2n+1 và 4n+6 là d (d thuộc N sao)
=> 2n+1 và 4n+6 đều chia hết cho d
=> 2.(2n+1) và 4n+6 đều chia hết cho d
=> 4n+2 và 4n+6 đều chia hết cho d
=> 4n+6-4n-2 chia hết cho d hay 4 chia hết cho d
Mà 2n+1 lẻ nên d lẻ => d =1 ( vì d thuộc N sao)
=> 2n+1 và 4n+6 là 2 số nguyên tố cùng nhau (ĐPCM)
bánh bao ơi khó quá