K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017
  • Với a=0 thay vào đc   \({{2.0^4+1}\over{1+0^2}}={1\over1}=1\)

       \(>\) \(3.0^2-1=-1\)

       => đúng với đpcm

  • Với a=1 thay vào đc \({{2.1^4+1}\over{1+1^2}}={3\over2}\)

           \(<\) \(3.1^2-1=2\)

         => Trái với đpcm

        => Đề sai

NV
10 tháng 5 2020

\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)

Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)

\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)

\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 3 2016

moi hoc lop 5

21 tháng 10 2019

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

14 tháng 9 2015

Bài này rất đơn giản dùng tính chất quan trọng của số chính phương là:

Một số chính phương khi chia 3 chỉ dư 0 hoặc 1

Chứng minh bổ đề:

Ta có : a là số nguyên nên a trong ba dạng: 3k  ;  3k+1   hoăc  3k+2  với k nguyên

Với a=3k thì \(a^2=9k^2\)chia 3 dư 0

Với a=3k+1 thì \(a^2=\left(3k+1\right)^2=9k^2+6k^2+1\) chia 3 dư 1

Với a=3k+2 thì \(a^2=\left(3k+2\right)^2=9k^2+12k^2+4\) chia 3 dư 1

Bài giải

Ta đặt: \(A=a^3+3a^2+2a+2=a\left(a^2+3a+2\right)+2=\left(a+1\right)\left(a+2\right)a+2\)

Vì a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 3

nên a(a+1)(a+2) chia hết cho 3 nên A chia 3 dư 2

Vậy A không là số chính phương

13 tháng 9 2015

khó quá , s zúp đc 

7 tháng 9 2017

1) ta đặc \(a^2+a+1=P=0\) \(\Rightarrow\left(a-1\right).p=0\) (vì \(P=0\))

ta có : \(P=a^2+a+1=0\Leftrightarrow a.P=a\left(a^2+a+1\right)=0\) (vì \(P=0\) )

\(\Leftrightarrow a.P=a^3+a^2+a=0\)

\(\Rightarrow a.P-P=\left(a-1\right).P=\left(a^3+a^2+a\right)-\left(a^2+a+1\right)\)

\(\left(a-1\right).P=a^3-1=0\Leftrightarrow a^3=1\) (vì \(\left(a-1\right).P=0\))

vậy \(a^3=1\left(đpcm\right)\)

2) ta có: \(a^2-2a+4=0\Leftrightarrow a^2-2a+1+3=0\)

\(\Leftrightarrow\left(a-1\right)^2+3=0\)

ta có : \(\left(a-1\right)^1\ge0\) với mọi \(a\) \(\Rightarrow\left(a-1\right)^2+3\ge3>0\) với mọi \(a\)

vậy phương trình : \(a^2-2a+4=0\) vô nghiệm

vậy không có giá trị \(a\) thỏa mảng \(\Leftrightarrow a^3+\dfrac{1}{a^3}\) không tồn tại và không có giá trị

7 tháng 9 2017

Bạn xem câu 1 thế này thì sao :

\(a^2+a+1=\left(a^2+a+0,25\right)+0,75\)

\(=\left(a+\dfrac{1}{2}\right)^2+0,75\ge0,75\)

=> vô nghiệm

=> \(a^3\) vô giá trị

với lại nếu \(a^3=1\Leftrightarrow a=1\)

\(a^2+a+1=3\) trái với giá thiết

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

2 tháng 11 2018

câu này mình type sai nha mn, mình vừa post bài mới