K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(3A=3^2+3^3+3^4+...+3^{2018}\)

\(\Leftrightarrow2A=3^{2018}-3\)

\(\Leftrightarrow2A+3=3^{2018}\) là lũy thừa của 3(ĐPCM)

2: \(2A+3=3^{2018}=\left(3^2\right)^{1009}=9^{1009}\) là lũy thừa của 9

19 tháng 6 2016

A=3+32+34+......+399+3100

=>3A= 32+34+......+399+3100+3101

-A=3+32+34+......+399+3100

=>2A=3101-3

=>2A+3=3101

=>2A+3 là 1 lũy thừa của 3.(đpcm)

19 tháng 6 2016

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

2A = 3101 - 3

=> 2A + 3 = 3101

=> đpcm

24 tháng 10 2015

D = \(3+3^2+3^3+...+3^{100}\)

3D = \(3^2+3^3+3^4+...+3^{101}\)

3D - D = \(3^{101}-3\)

2D = \(3^{101}-3\)

=> \(3^{101}-3+3=3^{101}\)( là lũy thừa của 3 )

15 tháng 10 2023

a: \(A=4+2^2+2^3+...+2^{20}\)

=>\(2A=8+2^3+2^4+...+2^{21}\)

=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)

\(=2^{21}+8-2^2-4=2^{21}\)

=>\(A=2^{21}\) là lũy thừa của 2

b:

\(B=3+3^2+3^3+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(2B=3^{101}-3\)

=>\(2B+3=3^{101}\) là lũy thừa của 3

15 tháng 10 2023

Em cảm ơn anh ạ.

29 tháng 8 2021

anh đi anh nhớ quê nha 

nhớ canh rau muống nhớ cà dầm tương 

nhớ thằng đẩy bố xuống mương 

bố mà bắt được bố tương vỡ mồm

11 tháng 2 2018

Ta có :

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow\)\(3A=3^2+3^3+3^4+...+3^{101}\)

\(\Leftrightarrow\)\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Leftrightarrow\)\(2A=3^{101}-3\)

\(\Leftrightarrow\)\(A=\frac{3^{101}-3}{2}\)

\(\Rightarrow\)\(2A+3=\frac{3^{101}-3}{2}.2+3=3^{101}-3+3=3^{101}\) 

Vì \(3^{101}\) là một luỹ thừa của \(3\)nên \(2A+3\) là một luỹ thừa của \(3\)

 Vậy \(2A+3\)laf một luỹ thừa của \(3\)

11 tháng 2 2018

\(A=3+3^2+......+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+.....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+.....+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow2A+3=3^{101}\)

\(\Leftrightarrow2A+3\) là 1 lũy thừ của 3

19 tháng 10 2016

a, \(A=1+2+2^2+2^3+...+2^{100}\)

=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)

=> \(A=2A-A=2^{101}-1\)

=> \(A+1=2^{101}\)

b, \(B=3+3^2+3^3+...+3^{2005}\)

\(3A=3^2+3^3+3^4+....+3^{2006}\)

=> \(2A=3A-A=3^{2006}-3\)

=> \(2A+3=3^{2006}\)là lũy thừa của 3

=> Đpcm

19 tháng 10 2016

a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)

Lấy 2A-A ta có: 

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(\Rightarrow A+1=2^{101}-1+1\)

\(\Rightarrow A+1=2^{101}\)

b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)

\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)

\(\Rightarrow2B=3^{2006}-3\)

\(\Rightarrow2B+3=3^{2006}-3+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3         ĐPCM

6 tháng 8 2019

A =2+2^1+2^2+2^3+.....+2^99

2A=2^1+2^2+....2^100

2A-A=2^100-2

Vậy A không phải

VC
6 tháng 8 2019

\(A=2+2^1+2^2+2^3+2^4+...+2^{99}\)

\(2A=2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2A-A=\left(2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2+2^1+2^2+...+2^{99}\right)\)

\(A=2^{100}\)

Vì \(2^{100}\)là lũy thừa của 2 nên A là lũy thừa của 2

17 tháng 8 2015

B=3+32+33+.........+32005

=>3B=32+33+34+...+32005

=>3B-B=(32+33+34+...+32006)-(3+32+33+....+32005)

=>2B=32+33+34+...+32006-3-32-33-...-32005

=>2B=32006-3

=>2B+3=32006

Vậy 2B+3 là lũy thừa của 3