Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)
#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)
\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)
#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4k + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.
=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9
Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)
\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)
Mà (2;3)=1
=> \(n\left(n+1\right)\left(n+2\right)⋮6\)
=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Câu b em kiểm tra lại đề bài.
\(2^{2n+1}+5^{2n}=2^{2n}.2+25^n=4^n.2+25^n\)
- Vì số chính phương khi chia cho 3 thì chỉ có thể dư \(0\) hoặc \(1\).
\(\Rightarrow\left\{{}\begin{matrix}4^nmod3\in\left\{0;1\right\}\\25^nmod3\in\left\{0;1\right\}\end{matrix}\right.\).
Mà \(4^n,25^n\) không chia hết cho \(3\) với mọi \(n\in N\)
\(\Rightarrow\left\{{}\begin{matrix}4^nmod3=1\\25^nmod3=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(4^n.2\right)mod3=2\\25^nmod3=1\end{matrix}\right.\Rightarrow\left(4^n.2+25^n\right)⋮3\)
\(\Rightarrowđpcm\)