Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{28}-1=\left(2^{14}\right)^2-1\equiv1^2-1\left(mod9\right)\)
Vậy \(2^{28}-1⋮29\).
\(5^6-25^3=\left(5^2\right)^3-25^3=25^3-25^3=0\)
\(\Rightarrow\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right)\left(4^6-26^3\right)\left(5^6-25^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right)\left(4^6+26^3\right)\left(5^6+25^3\right).....\left(10^6+20^3\right)}=0\)
a,
Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)
=>đpcm
b,
Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)
\(\Rightarrow2a+2=a+b+2\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2+b^2=2\) (đpcm)
Biến đổi vế trái ta có:
\(\left(2^1+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
= \(\left(2-1\right)\left(2+1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
= \(\left(2^4-1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
= \(\left(2^8-1\right)\left(2^6+1\right)\left(2^8+1\right)\)
= \(\left(2^{16}-1\right)\left(2^6+1\right)\)
=> Sai đề
\(VT=\left(2^1+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
\(=\left(2^1-1\right)\left(2^1+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^6+1\right)\left(2^8+1\right)\)
\(=\left(2^{16}-1\right)\left(2^6+1\right)\left(2^8+1\right)\)
tiếp
kết quả chia xong la 9256395
mình biết làm đó