Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Bài 1 :
Có : P = n^2+n+2 = n.(n+1)+2
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp
=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6
=> P có tận cùng là : 2 hoặc 4 hoặc 8
=> P ko chia hết cho 5
=> ĐPCM
Tk mk nha
Bài 2 :
Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6
= a.(a+1).(a+2)/6
Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 2 và 3
=> a.(a+1).(a+2) chia hết cho 6
=> A thuộc Z
Tk mk nha
a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai
b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)
\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)
Ta có :
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+49+343\right)+...+7^{4n-3}\left(1+7+49+343\right)\)
\(A=7.400+...+7^{4n-3}.400\)
\(A=400\left(7+...+7^{4n-3}\right)⋮400\)
Vậy \(A⋮400\)
Chúc bạn học tốt ~
ta nhóm 4 số thành 1 nhóm
A = \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+....\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^n\right)\) +\(7^n\))
A = \(\left(1+7+7^2+7^3\right).7+\left(1+7+7^2+7^3\right).7^5+...\left(1+7+7^2+7^3\right).7^{4n-3}\)
A = \(\left(1+7+7^2+7^3\right).\left(7+7^5+...+7^{4n-3}\right)\)
A = \(400.\left(7+7^5+...+7^{4n-3}\right)\)
=> A \(⋮\)400
a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1 +3 chia hết cho 5 b,7^4n _____________________1_____7^4n -1 luôn __________5
ns chung méo có ai gáy, sủa cả :3
Ta có:
3^2n+1 + 2^n+2
=(9^n).3 +( 2^n) .4
=(9^n).3 + 3(2^n) + 7(2^n)
=3(9^n-2^n) + 7(2^n) ( các bước này khá giống Phạm Bá Hoàng nhưng ko nghĩa là tớ copy bài cậu ý =))
Mà: 9^n - 2^n chia hết cho 7 ( vì 2 số này cùng chia 7 dư 2 nên mũ mấy lên cx cùng số dư khi chia cho 7)
Cụ thể hơn để mấy bạn khỏi cãi: tớ viết dấu = thay cho 3 gạch ngang nhé :3
Vì: 2=2(mod 7);9=2(mod 7)
=> 2^n=2^n(mod 7); 9^n=2^n(mod 7)
=> 3(9^n-2^n) chia hết cho 7 và 7(2^n) chia hết cho 7
nên 3^2n+1 + 2^n+2 chia hết cho 7 (đpcm)
có lẽ ko sai nx đâu nhỉ nếu sai ib vs =))
Bài này cx easy thôi.Dùng phép quy nạp là ra:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
+)Với n = 0 thì \(9^n.3+2^n.4=3+4=7\Rightarrow\)mệnh đề đúng với n = 0. (1)
Giả sử mệnh đề đúng với n = k.Tức là \(9^k.3+2^k.4⋮7\) (2)
Ta c/m nó đúng với n = k + 1.Tức là cần c/m \(9^{k+1}.3+2^{k+1}.4⋮7\) (3)
\(\Leftrightarrow9^k.27+2^k.8⋮7\).Thật vậy:
\(9^k.27+2^k.8=9\left(9^k.3+2^k.4\right)-2^k.28\)
Do \(9\left(9^k.3+2^k.4\right)⋮7;2^k.28⋮7\)
Suy ra \(9\left(9^k.3+2^k.4\right)-2^k.28⋮7\)
Suy ra (3) đúng .
Vậy theo nguyên lí qui nạp,ta có đpcm.