Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
Bài 1 :
\(a,\)\(\left(x-4\right)^2-36=0\)\(\Rightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Rightarrow\left(x-10\right)\left(x-2\right)=0\)\(\Rightarrow x\in\left\{10;2\right\}\)
\(b,\)\(\left(x+8\right)^2=121\)\(\Rightarrow\left(x+8\right)^2-11^2=0\)
\(\Rightarrow\left(x+8+11\right)\left(x+8-11\right)=0\)\(\Rightarrow\left(x+19\right)\left(x-3\right)=0\)\(\Rightarrow x\in\left\{-19;3\right\}\)
\(c,x^2+8x+16=0\)\(\Rightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\)\(\Leftrightarrow x=-4\)
\(d,4x^2-12x=-9\)\(\Rightarrow4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)\(\Rightarrow2x-3=0\)\(\Rightarrow x=\frac{3}{2}\)
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
Bài 1:
a: \(\Leftrightarrow4x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
b: \(\Leftrightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
=>(2x-6)(4x-4)=0
=>x=1 hoặc x=3
c: \(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
=>(-2x-4)(12x-4)=0
=>x=1/3 hoặc x=-2
Ta có : 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211 + 212 + ... + 231 + 232 + 233 + 234 + 235 + 236
= (2 + 22 + 23 + 24 + 25 + 26) + (27 + 28 + 29 + 210 + 211 + 212) + ... + (231 + 232 + 233 + 234 + 235 + 236)
= (2 + 22 + 23 + 24 + 25 + 26) + 26.(2 + 22 + 23 + 24 + 25 + 26) + .... + 230.(2 + 22 + 23 + 24 + 25 + 26)
= (2 + 22 + 23 + 24 + 25 + 26).(1 + 26 + ... + 230)
= 126.(1 + 26 + ... + 230)
= 21.6.(1 + 26 + ... + 230) \(⋮\)21
=> 2 + 22 + 23 + 24 + ... + 235 + 236 \(⋮\)21 (đpcm)