Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- 69 chia hết cho 3 nên 69 220119 chia hết cho 3
- 220 = 1 (mod 3) => 220 11969 = 1 (mod 3)
- 119 = 2 (mod 3) => 119 2 = 4 = 1 (mod 3)
=> (119 2 ) 34610 = 1 (mod 3) => 119 69220 = 1 (mod 3)
=> A = 220 11969 + 119 69220 + 69 220119 = 2 (mod 3)
=> A chia cho 3 dư 2 => A không thể chia hết cho 102. vì 102 chia hết cho 3
<=> (220 + 119 + 69) + (x)11969 +69220 + 220119
<=> 408 + (x )11969 + 69220 + 220119
Bỏ số mũ x ra cho dễ tính.
Ta có: <=> 408 : 102 = 4 (chia hết)
Vậy ....
Giả sử A chia hết cho 102
=>A chia hết cho 3(*)
Nhưng 220 chia 3 dư 1
=>\(220^{11969}\) chia 3 dư 1(1)
119 chia 3 dư 2
=>\(119^2\)chia 3 dư 1
=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)
69 chia hết cho 3
=>69^220119 cũng chia hết cho 3(3)
Từ (1),(2)và (3)
=>A chia 3 dư 2
Mâu thuẫn với (*)
=>SAI ĐỀ bạn à
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
Giải:
\(102=2.3.17\)
Ta có:
\(220\equiv0\left(mod2\right)\) nên \(220^{11969}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\) nên \(119^{69220}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\) nên \(69^{220119}\equiv-1\left(mod2\right)\)
\(\Rightarrow A\equiv0\left(mod2\right)\) Hay \(A⋮2\)
Tương tự ta cũng có: \(\left\{{}\begin{matrix}A⋮3\\A⋮17\end{matrix}\right.\)
Mà \(\left(2;3;17\right)=1\Rightarrow A⋮2.3.17=102\)
Vậy \(A=220^{11969}+119^{69220}+69^{220119}⋮102\) (Đpcm)
Có : 22011969 đồng dư 111969 =1 modun 3
11969220 đồng dư 269220=1617305 đồng dư 117305 modun 3.
69220119 chia hết cho 3
=> Tổng ba số ko chia hết cho 3
mà 102 chia hết cho 3.
sai đề 100000000000000000000000000%