Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Gọi 2 số đó là a, b \(\left(a,b>0\right)\)
+Có: a, b ko đổi
+Cần cm: \(\left(a+b\right)_{min}\Leftrightarrow a=b\)
+Có: \(\left(a-b\right)^2\ge0\\ \Rightarrow a^2-2ab+b^2\ge0\\ \Rightarrow a^2+b^2\ge2ab\\ \Rightarrow a^2+2ab+b^2\ge4ab\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow a+b\ge2\sqrt{ab}\)
Có: \(\left(a+b\right)_{min}=2\sqrt{ab}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\a+b=2\sqrt{ab}\end{matrix}\right.\)
\(\Leftrightarrow a=b=\sqrt{ab}\left(đpcm\right)\)
1) Gọi hai số đỏ là x+n và x-n [tổng luôn bằng 2x].
Ta có: \(\left(x+n\right)\left(x-n\right)=x^2-n^2\le x^2\)
Dấu "=" xảy ra \(\Leftrightarrow n^2=0\) , nghĩa là 2 số bằng nhau (điều phải chứng minh).
2) Gọi hai số đó là x và y [tích là xy]
Ta có: \(\left(x+y\right)^2\ge4xy\)
Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Vì x,y > 0 nên x + y nhỏ nhất \(\Leftrightarrow\left(x+y\right)^2\) nhỏ nhất \(\Leftrightarrow x=y\) (điều phải chứng minh)
1.Nửa chu vi mảnh đất là:
600 : 2 = 300 ( m )
Chiều dài là :
( 300 + 190 ) : 2 = 245 ( m )
Chiều rộng là:
245 - 190 = 55 ( m )
Diện tích là:
55 x 245 = 13475 ( m2 )
2.số 59
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
.....
\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}\)
Lời giải:
Giả sử $x,y$ là 2 số dương có $x+y=a$ không đổi.
Ta có:
$2xy=(x+y)^2-(x^2+y^2)=(x+y)^2-[(x-y)^2+2xy]$
$4xy=(x+y)^2-(x-y)^2\leq (x+y)^2$ do $(x-y)^2\geq 0$
$\Rightarrow xy\leq \frac{(x+y)^2}{4}=\frac{a^2}{4}$
Vậy $xy_{\max}=\frac{a^2}{4}$ khi $(x-y)^2=0$ hay $x=y$
Ta có đpcm.