![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : 1/n - 1/ n+1 =n+1/n.(n+1) - n/n(n+1)
=1/n(n+1)
Vậy ta có đpcm
\(\frac{1}{n}-\frac{1}{n}+1=0+1=1\) (1)
\(\frac{1}{n}.\left(n+1\right)=\frac{1}{n}.n+\frac{1}{n}.1=1+\frac{1}{n}\) (2)
Vì n là mẫu nên n\(\ne\)0. Vậy từ (1) và (2) suy ra không chứng minh được.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề bài!
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Vì \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\left(đpcm\right)\)
Chứng minh
\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+1}\)
Ta có:VP=\(\dfrac{1}{n}-\dfrac{1}{n+1}\)=
\(\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
=\(\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}=VT\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$
$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.
Sau này lên lớp cao hơn bạn sẽ phải sử dụng dạng này nhiều để làm bài toán giải phương trình nên mình khuyên bạn nên nắm vững dạng bài này nhé !! Trân trọng !!