Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat A=/32+1/42+1/52+1/62+...+1/1002<1/2.3+1/3.4+1/4.5+1/5.6+...+1/99.100 A<1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100<1/2 Chung to...
=> 1/32+1/42+1/52+ ....+ 1/1002<1/2.3+1/3.4+1/4.5+...+1/99.100
=> 1/32+1/42+1/52+ ....+ 1/1002<1/2-1/100=49/100<1/2
=> 1/32+1/42+1/52+ ....+ 1/1002<1/2 (đpcm)
( k cho mình nha )
Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(\Rightarrow B< \dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow B< \dfrac{1}{2}-\dfrac{1}{100}\left(1\right)\)
mà \(\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\rightarrow B< \dfrac{1}{2}\left(đpcm\right)\)
Ta có:
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}\)
Mà \(\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\left(đpcm\right)\)
\(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); \(\frac{1}{5^2}< \frac{1}{4.5}\); ......; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
Lại có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
Vậy: \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\)=> đpcm
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.7}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A<\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A<\(\left[\left(\dfrac{1}{1}-\dfrac{1}{8}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)\right]\)A<\(\left[\left(\dfrac{8}{8}-\dfrac{1}{8}\right)+0+0+0+0+0+0+0\right]\)
A<\(\dfrac{7}{8}< 1\)
Vậy ta có đpcm.
Sorry nha, chỗ phân tích ra thành tống đại số phải như này :
A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
Rồi làm tương tự.
Mình cho bạn công thức nè :\(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
Ta có: 1/32+1/42+1/52+1/62+.... +1/10002 =1/3.3+1/4.4+...+1/1000.1000
<1/2.3+1/3.4+....+1/999.1000=1/2-1/3+1/3-1/4+...+1/999-1/1000=1/2-1/1000<1/2
Vậy 1/32+1/42+1/52+1/62+1/10002 <1/2