K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

Ta có: 1/32+1/42+1/52+1/62+.... +1/1000=1/3.3+1/4.4+...+1/1000.1000

<1/2.3+1/3.4+....+1/999.1000=1/2-1/3+1/3-1/4+...+1/999-1/1000=1/2-1/1000<1/2

Vậy  1/32+1/42+1/52+1/62+1/1000<1/2

17 tháng 5 2016

Dat A=/32+1/42+1/52+1/62+...+1/1002<1/2.3+1/3.4+1/4.5+1/5.6+...+1/99.100                                                                 A<1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100<1/2                                   Chung to...

17 tháng 5 2016

=> 1/32+1/42+1/52+ ....+ 1/1002<1/2.3+1/3.4+1/4.5+...+1/99.100

=> 1/32+1/42+1/52+ ....+ 1/1002<1/2-1/100=49/100<1/2

=> 1/32+1/42+1/52+ ....+ 1/1002<1/2 (đpcm)

                 ( k cho mình nha )

24 tháng 4 2017

Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(\Rightarrow B< \dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow B< \dfrac{1}{2}-\dfrac{1}{100}\left(1\right)\)

\(\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(2\right)\)

\(\left(1\right),\left(2\right)\rightarrow B< \dfrac{1}{2}\left(đpcm\right)\)

24 tháng 4 2017

Ta có:

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}\)

\(\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)

=> \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\left(đpcm\right)\)

5 tháng 4 2017

\(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\)\(\frac{1}{5^2}< \frac{1}{4.5}\); ......; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=>  \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

Lại có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

 = \(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

Vậy: \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\)=> đpcm

5 tháng 4 2017

Tự làm !

8 tháng 5 2018

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.7}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A<\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A<\(\left[\left(\dfrac{1}{1}-\dfrac{1}{8}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)\right]\)A<\(\left[\left(\dfrac{8}{8}-\dfrac{1}{8}\right)+0+0+0+0+0+0+0\right]\)

A<\(\dfrac{7}{8}< 1\)

Vậy ta có đpcm.

8 tháng 5 2018

Sorry nha, chỗ phân tích ra thành tống đại số phải như này :

A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

Rồi làm tương tự.

Mình cho bạn công thức nè :\(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)