Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi biểu thức trên là A. Ta có:
\(2A=2\left(1^2+...+1^{100}\right)\)
\(=2+2^2+...+2^{101}\)
\(2A-A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(A=2^{101}-1\)
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)
A = 2101 - 1 (đpcm)
bàn làm được câu này ko cho kẹo nè