K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)

A = 2101 - 1 (đpcm)

18 tháng 9 2021

bàn làm được câu này ko cho kẹo nè

17 tháng 12 2019

gọi biểu thức trên là A. Ta có:

\(2A=2\left(1^2+...+1^{100}\right)\)

\(=2+2^2+...+2^{101}\)

\(2A-A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(A=2^{101}-1\)

20 tháng 6 2017

321>231

20 tháng 6 2017

321 > 231

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM

26 tháng 3 2017

(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)

=101+100+99+98+...+3+2+1

=101 . (101 + 2) : 2

=5151

101-100+99-98+...+3-2+1

=(101-100)+(99-98)+...+(3-2)+1

=1 + 1 + 1 + ... + 1

=101- 2 + 1
=100 : 2

=50 + 1

=51

(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101

13 tháng 10 2018

bang 101