K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)

\(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)

\(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)

Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)

\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)

\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)

Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

CMR:\(\frac{1}{200}< A< \frac{1}{99}\)

+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)

+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)

                   \(\frac{1}{101.101}>\frac{1}{101.102}\)

                 ............................................. 

                 \(\frac{1}{198.198}>\frac{1}{198.199}\)

                 \(\frac{1}{199.199}>\frac{1}{199.200}\)

=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)

=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)

=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)

=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)

=>A>\(\frac{1}{200}\)(1)

+)Ta lại có:

A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)

+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)

                        \(\frac{1}{101.101}< \frac{1}{100.101}\)

                      ................................................

                           \(\frac{1}{198.198}< \frac{1}{197.198}\)

                           \(\frac{1}{199.199}< \frac{1}{198.199}\)

 =>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)

=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)

=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)

=>A<\(\frac{1}{99}-\frac{1}{199}\)

Mà A<\(\frac{1}{99}-\frac{1}{199}\)

=>A<\(\frac{1}{99}\)(2)

+)Từ (1) và (2) 

=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)

Vậy \(\frac{1}{200}< A< \frac{1}{99}\)

Chúc bn học tốt

14 tháng 7 2016

A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!

A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!

A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!

A = 1 - 1/2016! < 1 (đpcm)

M = 1/52 + 1/6+ 1/7+ ... + 1/1002

M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101

M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101

M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B

=> M > B (đpcm)

C = 1/20 + 1/21 + 1/22 + ... + 1/200

C > 1/200 + 1/200 + 1/200 + 1/200

       (181 phân số 1/200)

C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)

17 tháng 9 2016

Ta có:

\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^{98}}\)

\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)

\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)

17 tháng 9 2016

cảm ơn bạn nha

12 tháng 10 2016

giải câu 3

14 tháng 10 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )

14 tháng 10 2017

Đúng rồi bạn giỏi quá !!!

12 tháng 11 2016

Đặt A=\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

A=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

A=\(3^1\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

A=\(3^1\cdot4+3^3\cdot4+...+3^{99}\cdot4\)

A=\(4\left(3^1+3^3+...+3^{99}\right)⋮4\left(đpcm\right)\)

17 tháng 11 2016

thanks

19 tháng 12 2019

B=1/2+(1/2)^2+................+(1/2)^100

=>1/2B=(1/2)^2+(1/2)^3+............+(1/2)^101

=>1/2B-B=(1/2^2+..............+1/2^101)-(1/2+..............+1/2^100)

=>1/2B-B=1/2^2+..............+1/2^101-1/2-..............-1/2^100

=>1/2B-B=1/2^101+(1/2^2-1/2^2)+................+(1/2^100-1/2^100)-1/2

=>1/2B-B=1/2^101+0+............+0-1/2

=>-1/2B=1/2^101-1/2

=>B=1/2^101-1/2

         __________

              -1/2

=>B<1