Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
Toàn bộ năng lượng đến trong 1s là:
\(E_1=N_1\frac{hc}{\lambda_1}\)
Năng lượng hạt phát ra trong 1s là :
\(E_2=N_2\frac{hc}{\lambda_2}\)
mặt khác ta có
\(E_2=H.E_1\)
\(N_2\frac{hc}{\lambda_2}=HN_1\frac{hc}{\lambda_1}\)
\(\frac{N_2}{\lambda_2}=H\frac{N_1}{\lambda_1}\)
\(N_2=H\frac{N_1\lambda_2}{\lambda_1}=2.4144.10^{13}hạt\)
Đáp án là C. Tia gamma
Tia gamma là tia có bước sóng ngắn hơn cả tia X (tia Rơn-ghen). Bước sóng nhỏ hơn 100 pm (picomet), tức tần số lớn hơn \(10^{10}\) là tia gamma. Tia này có năng lượng rất cao, có khả năng xuyên qua vài cm chì đặc.
Ta có: \(\frac{hc}{\lambda}=A+\frac{1}{2}mv^2_{0max}\left(\text{∗}\right)\)
+Khi chiếu bức xạ có \(\lambda_1:v_{0max1}=\sqrt{\frac{2\left(\frac{hc}{\lambda_1}-A\right)}{m}}\left(1\right)\)
+Khi chiếu bức xạ có \(\lambda_2:v_{0max2}=\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\left(2\right)\)
Từ \(\text{(∗)}\) ta thấy lhi \(\lambda\) lớn thì \(v_{0max}\) nhỏ
\(\Rightarrow v_{0max1}=2,5v_{0max2}\left(\lambda_1<\lambda_2\right)\)
\(\Leftrightarrow\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}=2,5\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\)
\(\Leftrightarrow\frac{hc}{\lambda_1}-A=6,25\left(\frac{hc}{\lambda_2}-A\right)\) với \(A=\frac{hc}{\lambda_0}\)
\(\Rightarrow\lambda_0=\frac{5,25\lambda_1\lambda_2}{6,25\lambda_1-\lambda_2}=\frac{5,25.0,4.0,6}{6,25.0,4-0.6}=0,663\mu m\)
1) Công thoát của êlectron ra khỏi bề mặt catôt
\(A=\frac{hc}{\lambda_0}=3,025.10^{-19}J\)
2) Vận tốc ban cực đại của electron
\(V_{max}=\sqrt{\frac{2hc}{m}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)}=5,6.10^5m\text{/}s\)
3) Hiệu điện thế hãm để không có electron về catôt.
\(v_h=\frac{hc}{e}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)=0,91V\)
Suất điện động hiệu dụng là \(E = \dfrac{{{E_0}}}{{\sqrt 2 }} = \dfrac{{220\sqrt 2 }}{{\sqrt 2 }} = 220V\).
1Bình chọn giảm
Trong trường hợp ban đầu giotj thủy ngân nằm chính giữa nên thể tích 2 phần bằng nhau
Tỉ số này không đổi do khí vẫn được giữ cố định trong bình.
Khi cùng tăng nhiệt độ của 2 bình lên 1 lượng nhỏ thì tỉ số giua 2 nhiệt độ thay đổi dẫn đến tỉ lệ thể tích thay đổi. Bên nào thể tích nhỏ hơn thì là do giotj thủy ngân dịch về phía đó.
Tỷ số giua 2 nhiệt độ phụ thuộc (T1 > T2 hay không)
Nêú biết bên nào có nhiệt độ cao hơn sẽ biết thủy ngân dịch về bên nào
1. Cường độ dòng điện cùng pha với điện áp -> \(Z_L=Z_C\)
Nếu nối tắt tụ C thì mạch chỉ còn R nối tiếp với L.
\(\tan\varphi=\frac{Z_L}{R}=\tan\frac{\pi}{3}=\sqrt{3}\Rightarrow Z_L=\sqrt{3}.50=50\sqrt{3}\Omega\)
\(\Rightarrow Z_C=50\sqrt{3}\Omega\)
2. Cuộn dây phải có điện trở R
Ta có giản đồ véc tơ
Ud Uc Um 120 120 Ur 45 0
Từ giản đồ ta có: \(U_C=\sqrt{120^2+120^2}=120\sqrt{2}V\)
\(U_R=120\cos45^0=60\sqrt{2}V\)
Cường độ dòng điện: \(I=\frac{U_C}{Z_C}=\frac{120\sqrt{2}}{200}=0,6\sqrt{2}V\)
Công suất: \(P=I^2R=I.U_R=0,6\sqrt{2}.60\sqrt{2}=72W\)
Quan sát và phân tích hiện tượng nước chảy ở ống nhỏ giọt ta thấy: đầu tiên giọt nước to dần nhưng chưa rơi xuống, đó là vì có các lực căng bề mặt tác dụng lên đường biên \(BB'\) của giọt nước, các lực này có xu hướng kéo co mặt ngoài của giọt nước lại, vì thế hợp lực của chúng hướng lên trên và có độ lớn \(\text{F=σl}\), với \(\text{l=πd}\),( \(d\) là đường kính miệng).
Đúng lúc giọt nước tách ra và rơi xuống thì trọng lượng \(P\) của giọt nước bằng lực căng bề mặt \(F\);
\(F=P\),
suy ra :
\(\text{σπd=mg}\) hay \(\sigma=\frac{mg}{\pi d}\left(1\right)\)
với \(m\) là khối lượng của \(1\) giọt nước. Theo đề bài \(2cm^3\) chứa \(200\) giọt nước, khối lượng \(2cm^3\) bằng \(2g\); vì vậy khối lượng của một giọt nước bằng
\(m=\frac{2g}{200}=0,01g=10^{-5}kg\)
Thay số vào (1) ta được: \(\sigma=\frac{9,8.10^{-5}}{3,14.0,4.10^{-3}}\approx0,078N\text{/}m\)
Hệ số căng bề mặt của nước bằng \(0,078N\text{/}m\)
Đáp án B
Ta có: