Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
b: Xét tứ giác ADME có
AD//ME
AE//DM
Do đó: ADME là hình bình hành
mình rảnh nên mình vẽ thôi :V A B C D M E
a. xét tam giác ABC, có:
M là trung điểm AB (giả thuyết)
D là trung điểm BC (AD là đường trung tuyến tam giác ABC)
=> MD là đường trung bình tam giác ABC
=> MD // AC
mà E thuộc MD (E là điểm đối xứng của D qua M)
=> DE // AC (1)
ta có: MD là đường trung bình tam giác ABC (chứng minh trên)
=> MD = \(\frac{1}{2}\)AC
mà M là trung điểm cua ED (E là điểm đối xứng của D qua M)
=> ED = AC (2)
từ (1),(2):
=> AEDC là hình bình hành (tứ giác có 1 cặp cạnh đối vừa song song, vừa bằng nhau) (chỗ này đề sai nên mình sửa lại là AEDC)
b. xét tứ giác AEBD, có:
M là trung điểm ED (E là điểm đối xúng của D qua M)
M là trung điểm AB (giả thuyết)
ED cắt AB tại M
=> AEBD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
xét tam giác ABC vuông A, có:
AD là đường trung tuyến (giả thuyết)
=> AD = BD
mà AEBD là hình bình hành (chứng minh trên)
=> AEBD là hình thoi (hình bình hành có 2 cặp cạnh kề bằng nhau)
C. ta có: D là trung điểm của BC (AD là đường trung tuyến)
=> BD = \(\frac{1}{2}\)BC
=> BD= \(\frac{5}{2}\)
=> BD= 2.5 cm
ta có: AEBD là hình thoi (chứng minh trên)
=> P(chu vi)AEBD = 2.5x4
= 10 cm
Kẻ BH là đường cao ứng với cạnh CD của hình bình hành ABCD
=> SABCD = BH.CD
Theo đề bài ta có chu vi hình bình hành ABCD bằng 60cm.
=> 2(AB + BC) = 60 ó 2.3BC = 60 ó BC = 10cm
Xét tứ giác KICB ta có:
IC = BC = KB = IK = 1 2 AB = 10cm
=> IKBC là hình thoi (dấu hiệu nhận biết).
Mà B ^ = 1200 => I C B ^ = 1800 – 1200 = 600
Xét tam giác ICB có: I C = B C I C B = 60 0
=> ICB là tam giác đều. (tam giác cân có góc ở đỉnh bằng 600).
=> BH vừa là đường cao vừa là đường trung tuyến ứng hay H là trung điểm của IC.
=> HI = HC = 1 2 BC = 5cm
Áp dụng định lý Pytago với tam giác vuông HBC ta có:
BH = B C 2 − H C 2 = 10 2 − 5 2 = 75 = 5 3 cm
=> SABCD = BH.AB = BH.2BC = 5 3 .2.10 = 100 3 cm2
Đáp án cần chọn là: A