\(Ch\text{ứng}\)\(minh\)\(r\text{ằng}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Ta có :

\(3a+2b⋮17\)

\(\Rightarrow9\left(3a+2b\right)⋮17\)

\(\Rightarrow27a+18b⋮17\)

\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)(1)

Ta có :

\(10a+b⋮17\)

\(\Rightarrow2\left(10a+b\right)⋮17\)

\(\Rightarrow20a+2b⋮17\)

\(\Rightarrow17a+3a+2b⋮17\)

\(\Rightarrow3a+2b⋮17\)(2)

Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)

_Chúc bạn học tốt_

30 tháng 12 2018

AH la duong cao cua cac hinh tam giac nao?

Viet ten day tuong ung cua hinh tam giac.

​​​​​ A B H D C

30 tháng 12 2018

\(P=5+5^2+...+5^{101}+5^{102}\)

\(P=5\left(1+5\right)+...+5^{101}\left(1+5\right)\)

\(P=5\cdot6+...+5^{101}\cdot6\)

\(P=6\cdot\left(5+...+5^{101}\right)⋮6\left(đpcm\right)\)

C/m tương tự khi chứng minh chia hết cho 31 ( nhóm 3 số với nhau )

5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

17 tháng 12 2016

Ta có: \(\overline{ab}\text{⋮}17\)

\(\Rightarrow\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)​\text{⋮}17\)

Giả sử \(\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)

\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)

Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)

 

12 tháng 7 2017

a/

2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)

17(x+y) chia hết cho 17

2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17

Các trường hợp khác tương tự

9 tháng 10 2017

Đặt :

\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)

\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)

\(17a⋮17\)

\(\Leftrightarrow2y-x⋮17\)

\(x⋮17\)

\(\Leftrightarrow2y⋮17\)

\(\Leftrightarrow2\left(10a+b\right)⋮17\)

\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)

\(\Leftrightarrowđpcm\)

9 tháng 10 2017

Ta có:

\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)

\(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)

9 tháng 7 2019

Ta có : 3a + 11b chia hết cho 17

       13( 3a + 11b ) chia hết cho 17

Hay : 39a + 143b chia hết cho 17

Mà : 34a + 136b chia hết cho 17

Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17

Bạn tự chứng minh theo chiều ngược lại nhé !

11 tháng 2 2017

a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.

Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.

Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.

b) Tương tự, lấy (x + 7y) + 5(6x + 11y)

c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)

Nhớ tíck mình nha! :)