Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng hệ thức viet => S= 2\(2\sqrt{3}\) P = 1 thay vào tính
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-3\end{matrix}\right.\)
\(A=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left(x_1^2+x_2^2\right)}=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{6.\left(-2\right)^2-2\left(-3\right)}{5.\left(-3\right)\left[\left(-2\right)^2-2\left(-3\right)\right]}=-\frac{1}{5}\)
\(B=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\frac{3\left(-2\right)^2-\left(-3\right)}{4.\left(-3\right)\left(-2\right)}=\frac{15}{24}=\frac{5}{8}\)
a/ \(\Delta'=m^2-5m^2+16=16-4m^2\ge0\Rightarrow-2\le m\le2\)
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=5m^2-16\end{matrix}\right.\)
\(A=5x_1^2+3x_1x_2-17x_1+5x_2^2+3x_1x_2-17x_2\)
\(\Rightarrow A=5\left(\left(x_1+x_2\right)^2-2x_1x_2\right)+6x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(x_1+x_2\right)^2-4x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(2m\right)^2-4\left(5m^2-16\right)-17.2m=64-34m\)
Mà \(-2\le m\le2\) \(\Rightarrow-4\le A\le132\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=132\\A_{min}=-4\end{matrix}\right.\)
\(x^2-5x+m-3=0\)
có 2 nghiệm x1;x2 thoả mãn theo vi-et ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=5\left(1\right)\\x_1x_2=\frac{c}{a}=m-3\left(2\right)\end{matrix}\right.\)
theo đề bài ta có
\(x^2_1-2x_1x_2+3x_2=1\)(3)
thế (1) vào (3) ta được
\(x^2_1-2x_1\left(5-x_1\right)+3\left(5-x_1\right)=1\)
\(x^2_1-10x_1+2x^2_1+15-3x_1=1\)
\(3x^2_1-13x_1+14=0\)
=>\(\left[{}\begin{matrix}x_1=\frac{7}{3};x_2=\frac{8}{3}\\x_1=2;x_2=3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\frac{83}{9}\\m=9\end{matrix}\right.\)
vậy .....
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\sqrt{3}\\x_1x_2=1\end{matrix}\right.\)
\(A=\frac{3\left(x_1^2+x_2^2+2x_1x_2\right)-x_1x_2}{4x_1x_2\left[x_1^2+x_2^2+2x_1x_2-2x_1x_2\right]}=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)
\(=\frac{3\left(-3\sqrt{3}\right)^2-1}{4.1.\left[\left(-3\sqrt{3}\right)^2-2.1\right]}=...\)