\(xy+yz+xz=1\). Hãy tìm Giá trị nhỏ nhất của biểu thức sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Cách giải khác:

Dư đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta được \(P_{Min}=1\)

Thật vậy cần chứng minh \(Σ\frac{1}{4x^2-yz+2}\ge1\LeftrightarrowΣ\left(\frac{1}{4x^2-yz+2}-\frac{1}{3}\right)\ge0\)

\(\LeftrightarrowΣ\frac{1-4x^2+yz}{4x^2-yz+2}\ge0\LeftrightarrowΣ\frac{xy+xz+2yz-4x^2}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\frac{\left(z-x\right)\left(2x+y\right)-\left(x-y\right)\left(2x+z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(z^2+2xy+2\right)\left(z^2-xy+2\right)\ge0\)

25 tháng 2 2017

3/2 nha

5 tháng 2 2018

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

10 tháng 2 2018

bạn có thể trình bày theo bdt cô si hay bunhia  được không

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

5 tháng 11 2019

Chứng minh bổ đề : \(\frac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}}=3x\left(đpcm\right)\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có :

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(P_{min}=3\)

Chúc bạn học tốt !!!

5 tháng 11 2019

Chứng minh bổ đề: \(\frac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}=3x\left(đpcm\right)}\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(Pmin=3\)

6 tháng 4 2017

Dự đoán dấu "=" xảy ra khi \(x=y=z=1\) ta tìm được \(P=9\)

Ta sẽ chứng minh nó là \(GTLN\) của \(P\)

Thật vậy, ta cần chứng minh 

\(Σ\frac{11x+4y}{4x^2-xy+2y^2}\le\frac{3\left(xy+yz+xz\right)}{xyz}\)

\(\Leftrightarrow\left(\frac{3}{x}-\frac{11x+4y}{4x^2-xy+2y^2}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}+\frac{1}{y}-\frac{1}{x}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(4x^2-xy+2y^2\right)}\ge0\) (luôn đúng)

Vậy \(P_{Max}=9\) khi \(x=y=z=1\)

1 tháng 6 2020

ggvcgfdsx

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).

Vghgyuhvfgcvvvvvv

27 tháng 2 2016

\(xy+xz+yz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
bây giờ ta đi chứng minh bđt phụ:
với \(a_1;a_2;...;a_8>0\)  ta có: \(a_1+a_2+...+a_8\ge8\sqrt[8]{a_1a_2...a_8}\)(Cô si) 
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge8\sqrt[8]{\frac{1}{a_1a_2...a_8}}\)
Nhân vế với vế ta đc:
\(\left(a_1+a_2+...+a_8\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\right)\ge64\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge\frac{64}{a_1+a_2+...+a_8}\)
Dấu "=" xảy ra <=> a1=a2=..=a8
a/d bđt trên ta có:
\(\frac{64}{4x+3y+z}=\frac{64}{x+x+x+x+y+y+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\)
a/d tương tự với 2 cái còn lại rồi cộng vế với vế ; thay tổng 1/x+1/y+1/z=1 là xong nhé