Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
S = ( 1 + 2 ) + ( 2^2 + 2^3 ) + ( 2^4 + 2^5 ) + ( 2^6 + 2^7 )
S = 3 + 2^2 . ( 1 + 2 ) + 2^4 . ( 1 + 2 ) + 2^6 . ( 1 + 2 )
S = 3 + 2^2 . 3 + 2^4 . 3 + 2^6 . 3
S = 3 . ( 2^2 + 2^4 + 2^6 )
Vi 3 chia het cho 3 nen 3 . ( 2^2 + 2^4 + 2^6 ) chia het cho 3
hay S chia het cho 3
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\)\(S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=3\cdot\left(1+2^2+2^4+2^6\right)⋮3\)
VẬY \(S⋮3\left(đpcm\right)\)
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
mọi người thật là nhẫn tâm
chẳng ai giúp mk
TRỜI ƠI!!! AI MS LÀ BN BÈ THỰC SỰ
Ko cs đứa mô trả lời chứ chi
Loại bn bè vs mấy ng chỉ là giả tạo thôi
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
\(S=1+2+2^2+2^3+...+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=3+3\cdot2^2+3\cdot2^4+3\cdot2^6+3\cdot2^8+3\cdot2^{10}\)
\(=3\left(1+2^2+2^4+2^6+2^8+2^{10}\right)⋮3\)
S= (1+2)+22(1+2)+24(1+2)+26(1+2)+28(1+2)+210(1+2)
S=3(1+22+24+26+28+210)
suy ra S chia hết cho 3