K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2-11x-26=0\)

nên a=1; b=-11; c=-26

Áp dụng hệ thức Viet, ta được:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)

và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)

 

13 tháng 3 2022

undefined

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

20 tháng 12 2017

a)  2 x 2   –   17 x   +   1   =   0

Có a = 2; b = -17; c = 1

Δ   =   b 2   –   4 a c   =   ( - 17 ) 2   –   4 . 2 . 1   =   281   >   0 .

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2

b)  5 x 2   –   x   –   35   =   0

Có a = 5 ; b = -1 ; c = -35 ;

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 5 . ( - 35 )   =   701   >   0

Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7

c)  8 x 2   –   x   +   1   =   0

Có a = 8 ; b = -1 ; c = 1

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 8 . 1   =   - 31   <   0

Phương trình vô nghiệm nên không tồn tại x1 ; x2.

d)  25 x 2   +   10 x   +   1   =   0

Có a = 25 ; b = 10 ; c = 1

Δ   =   b 2   –   4 a c   =   10 2   –   4 . 25 . 1   =   0

Khi đó theo hệ thức Vi-et có:

x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25

6 tháng 4 2019

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)

Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                                                                           \(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)

       \(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)

Khi đó y1 ; y2 là nghiệm của pt

\(Y^2-SY+P=0\) 

\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)

loading...  loading...