Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)\(P=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}+1-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}+1}+1-2\sqrt{x}+2=x-\sqrt{x}+1-2\sqrt{x}+2=x-3\sqrt{x}+3\)
chắc cái này bạn chép sai đề. theo mình thì bài này tử mẫu đều triệt tiêu đc cho nhau. mình tự sửa đề nha. nếu đề là vậy thì pm để mình làm lại nha
b) \(P=0\Leftrightarrow x-3\sqrt{x}+3=0\Leftrightarrow\left(x-3\sqrt{x}+\frac{9}{4}\right)+\frac{3}{4}=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x => k có giá trị nào của x thỏa mãn
a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)
\(=\frac{4}{1-\sqrt{x}}\)
c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
B=\(\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)ĐK :\(x>0;x\ne1\)
B=\(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
B=\(\frac{\left(x+\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
B=\(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
B=\(\sqrt{x}-1\)
b, Để B=3 =>\(\sqrt{x}-1=3\)
<=>\(\sqrt{x}=4\)
<=> x=16 (nhận)
Vậy x =16 thì B=3
a)\(\frac{\left(x-1\right)}{\sqrt{x}}\)
b) để P>0\(\Rightarrow\)\(\frac{\left(x-1\right)}{\sqrt{x}}>0\)
do \(\sqrt{x}>0\Rightarrow x-1>0\)
\(\Leftrightarrow x>1\)
c)P=\(\frac{8}{3}\)
a. P = \(\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)
\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b. P = 0 \(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\sqrt{x}=0\)hoặc \(\sqrt{x}-1=0\)
\(\Leftrightarrow x=0\) hoặc x = 1 với x = 0 không thỏa mản. Vậy x = 1 thì P = 0