Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Chứng tỏ rằng
a,\(n^3\) - n \(⋮\) 6
Ta có : \(n^3\) -n =n.(\(n^2\) -1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì n-1 , n , n+1 là 3 số hạng liên tiếp
\(\Rightarrow\) (n-1).n.(n+1)\(⋮\) 3 (1)
Lại có : n-1, n là 2 số hạng liên tiếp
=> (n-1).n \(⋮\) 2
=> (n-1) .n.(n+1) \(⋮\) 2 (2)
Từ (1) và (2) ta thấy:
(n-1).n.(n+1) \(⋮\) 2,3 mà (2,3) =1
=(n-1) .n.(n+1)\(⋮\) 6 (đpcm)
Vậy \(n^3\) -n \(⋮\) 6
b, Ta có : S= 1-3+3^2-3^3+. . . +3^98-3^99
S= (1-3+3^2-3^3) + . . . +(3^96-3^97 + 3^98-3^99)
S= (-20).1 + . . . + 3^96 . (-20)
S= (-20) . ( 1+ . . . + 3^96) \(⋮\) 20 ( đpcm)
c, Vì 6x + 11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31
=> 6x+ 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà ( 6,1) = 1 nên x+7y chia hết cho 31 (đpcm)
Ta có: \(2^{n+3}+5^n-2^{n+1}+5^{n+1}=\left(2^{n+3}+2^{n+1}\right)+\left(5^n+5^{n+1}\right)\)
\(=2^n\left(2^3-2\right)+5^n\left(1+5\right)=2^n.6+5^n.6=6.\left(2^n+5^n\right)⋮6\left(đpcm\right)\)
Kb với mình nhé ~_~
2^n+3+5^n-2^n+1+5^n+1
= (2^n+3-2^n+1) + (5^n+5^n+1)
= 2^n.(2^3-2)+5^n.(5+1)
= 2^n.6+5^n.6 = 6.(2^n+5^n) chia hết cho 6
k mk nha
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
Bài 1 :
Gọi d là ước chung của 2n + 1 và 3n + 2 ( \(d\in Z;d\ne0\) )
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
Vì \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
Vì \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
Vậy \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
Bài 2 : thiếu đề ?
Bài 3 :
Để A nguyên \(\Rightarrow2⋮n-1\Rightarrow n-1\) thuộc ước của 2
\(\Rightarrow n-1\in\left\{1;-1;-2;2\right\}\Rightarrow n\in\left\{2;0;-1;3\right\}\)
Vậy \(n\in\left\{2;0;-1;3\right\}\) thì A nguyên
1)
Gọi d là UCLN (2n+1;3n+2)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)3(2n+1)\(⋮\)d=)6n+3\(⋮\)d
\(\Rightarrow\)2(3n+2)\(⋮\)=)6n+4\(⋮\)d
Vì 6n+3 và 6n+4 \(⋮\)d nên
(6n+4)-(6n+3) chia hết cho d
1\(⋮\)d
=)\(\dfrac{2n+1}{3n+2}\)tối giản với mọi n
Không chứng tỏ được nhé bạn, nếu là 5^n thì còn chứng tỏ dc :D