A B C D D E F G G...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Các hình ABCD, DEFG, GHIK là hình thang, vì :

Hình thang là một tứ giác lồi có hai cạnh song song.

Hình TUVW không là hình thang vì không thỏa mãn điều kiện trên.

14 tháng 10 2019

SO EASY!

A B C D E F G H

+) Xét tam giác ABD có :

     E là trung điểm của AB 

     H là trung điểm của AD

=> HE là đường trung bình của tam giác ABD 

\(\Rightarrow\hept{\begin{cases}HE//BD\left(1\right)\\HE=\frac{1}{2}BD\left(2\right)\end{cases}}\)

+) Xét tam giác CBD có : 

    F là trung điểm của BC 

    G là trung điểm của CD

=> FG là đường trung bình của tam giác CBD

\(\Rightarrow\hept{\begin{cases}FG//BD\left(3\right)\\FG=\frac{1}{2}BD\left(4\right)\end{cases}}\)

Từ ( 1 ) và ( 3 ) \(\Rightarrow HE//FG\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow HE=FG\)

+) Xét tứ giác EFGH có :

    HE // FG ; HE = FG

=> EFGH là hình bình hành.

+) Xét tam giác ABC có 

   E là trung điểm của AB

   F là trung điểm của BC

=> EF là đường trung bình của tam giác ABC

=> EF // AC 

+) Ta có : HE // BD 

Mà \(BD\perp AC\)

\(\Rightarrow HE\perp AC\)

Ta lại có:  EF // AC

\(\Rightarrow EF\perp HE\)

\(\Rightarrow\widehat{HEF}=90^o\)

+) Hình bình hành EFGH có góc HEF = 90o

=> EFGH là hình chữ nhật. 

Ok đã xong!

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 7: ( 15 sp cho 3 người trả...
Đọc tiếp

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !

Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!

Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 7: ( 15 sp cho 3 người trả lời đầu; 2sp cho hình vẽ )

Hình học:cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nữa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng \(EF=\frac{1}{2}CD\)

Số học: Chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho \(1983^k-1\)chia hết cho \(10^5\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 3 người đầu tiên )

Câu 1: Cho tam giác ABC. Trong các hình chữ nhật có 2 đỉnh nằm trên cạnh BC và 2 đỉnh còn lại lần lượt nằm trên 2 cạnh AB và AC, hãy tìm hình chữ nhật có diện tích lớn nhất

Câu 2:Chứng minh các bất phương trình sau tương đương 

a) \(2x^2+3x+1>0\)\(\frac{2}{3}x^2+x+\frac{1}{3}>0\)

b)\(4x-1< 0\)và \(1-4x>0\)

c)\(\frac{3x-2}{4}+2\frac{1}{2}>0\)và \(3x+8>0\)

2 Câu đặc biệt  :3 

Cho a, b, c là các số thực dương tùy ý. chứng minh rằng 

\(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(c+a\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Giai phương trình \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

Thời gian công bố kết quả 7:30 ngày 1/9

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

mong cô chi  tick gp cho các bạn được thưởng 

20
31 tháng 8 2020

Câu đặc biệt :

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)

\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)

\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)

\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0

<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3

Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)

31 tháng 8 2020

Câu 2:

a) Ta có: \(2x^2+3x+1>0\)

\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)

\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)

=> đpcm

b) Ta có: \(4x-1< 0\)

\(\Leftrightarrow0-\left(4x-1\right)>0\)

\(\Leftrightarrow1-4x>0\)

=> đpcm

c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)

\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)

\(\Leftrightarrow\frac{3x+8}{4}>0\)

\(\Rightarrow3x+8>0\)

=> đpcm

Cuộc thi môn Tiếng Anh, toán vòng 1,... vào ngày 28/8!!Đơn đăng kí :trả lời gồm 5 bài toán ( 1 bài lớp 6, 1 bài lớp 7, 2 bài lớp 8, 1 bài lớp 9); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 6:  ( 10sp cho 2 người trả lời đầu tiên với điều kiện người thứ 2 cách khác...
Đọc tiếp

Cuộc thi môn Tiếng Anh, toán vòng 1,... vào ngày 28/8!!

Đơn đăng kí :trả lời gồm 5 bài toán ( 1 bài lớp 6, 1 bài lớp 7, 2 bài lớp 8, 1 bài lớp 9); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 6:  ( 10sp cho 2 người trả lời đầu tiên với điều kiện người thứ 2 cách khác người thứ nhất)

Tìm  \(n\in z\)và \(n>-2\)để phân số \(\frac{n+7}{n+2}\)tối giản

Lớp 7: ( 15 sp cho 1 người trả lời đầu; 2sp cho hình vẽ ) 

Cho \(\Delta ABC\), đường phân giác AD. Trên đoạn thẳng AD lấy các điểm E và F sao cho \(\widehat{ABE}=\widehat{CBF}\). Chứng minh rằng \(\widehat{ACE}=\widehat{BCF}\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 2 người đầu tiên )

Câu 1: Giai các bất phương trình sau: 

a)\(\frac{5x^2-3}{5}+\frac{3x-1}{4}< \frac{x\left(2x+3\right)}{2}-5\)

b) \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)

Câu 2: Cho \(\Delta ABC\)vuông tại A. Chọn trên AB điểm D kẻ Dx // AC cắt BC tại E thỏa mãn điều kiện \(AE\perp CD\)tại K, và \(\frac{CD}{AE}=\frac{m}{n}\). Tính \(\frac{S_{BDE}}{S_{ADEC}}\)

Lớp 9: ( 25s cho 2 người 2 cách giải)

Cho a, b, c là các số thực dương thỏa mãn \(a+b+c\le1\). Chứng minh rằng:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{cb\left(c+b\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)

Tiếng Anh: ( 15sp cho 1 người )

 Fill in each blank with the appropriate forms of the word in bracket.

1. There is a ……….. of books on the shelf. (collect)

2. It is very …………….. for people in remote areas to get to hospitals. (convenience)

3. He is very …………. with his hands. (skill)

4. It is said that water collected from the local streams is ………… to drink. (safe)

5. I like to eat ………., so I eat a lot of fruits and vegetables every day. (health)

thời gian làm bài :từ h đến chiều ngày mai vào lúc 15h ( 3 giờ chiều )

Thời gian công bố kết quả 9:30 lúc 15h30

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

17
28 tháng 8 2020

Tiếng Anh: ( 15sp cho 1 người )

 Fill in each blank with the appropriate forms of the word in bracket.

1. There is a collection of books on the shelf. (collect)

2. It is very inconvinient  for people in remote areas to get to hospitals. (convenience)

3. He is very skillful with his hands. (skill)

4. It is said that water collected from the local streams is safe to drink. (safe)

5. I to eat healthy, so I eat a lot of fruits and vegetables every day. (health)

29 tháng 8 2020

Theo AM - GM cho 3 số dương: \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Tiếp tục sử dụng AM - GM, ta được: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(do \(a+b+c\le1\))

và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)

Từ đó suy ra \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(**)

Từ (*) và (**) suy ra \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{27}{2\left(ab+bc+ca\right)}\)

Đến đây, ta cần chứng minh \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\ge\frac{87}{2}\)(***)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{23}{2.\frac{\left(a+b+c\right)^2}{3}}\ge\frac{87}{2}\)*đúng theo (***)*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Hướng dẫn cách vẽ hình : Cậu nên vẽ hình thang ABCD cân tại C và D và sao cho góc A và góc D là 2 góc kề 1 bên của tứ giác !!!!( ko bt vẽ trên này

        Giải :

Ta có hình thang ABCD có 2 đáy AB và DC

=>  AB//DC

Mà M là giao điểm phân giác của 2 góc B và góc D nằm trên AB 

=> AM//DC

=> BM//DC

Vì AM//BC

=> AMD = MDC ( 2 góc so le trong ) ( 1)

Mà DM là pg ADC

=> ADM = MDC (2)

Từ (1) và (2) :

=> ADM = AMD

=> Tam giác AMD cân tại A 

=> AD = AM(3)

Chứng minh tương tự ta cũng có tam giác MBC cân tại B và suy ra BC = MB(4)

Từ (3) và (4) 

=> M là trung điểm AB

Còn ý b) ko bt làm

Sai thông cảm nhé

9 tháng 3 2019

Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)

                                   \(=82983+\frac{1}{\frac{242}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{119}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)

                                   \(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)

                                 \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)

                               \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

Cân bằng hệ số ta thu được \(a=82983\)

                                            \(b=1\)

                                            \(c=1\)

                                           \(d=29\)

                                           \(e=1\)

                                          \(f=2\)

                                         \(g=1\)

P/S: e lớp 6 , có gì sai thông cảm ạ =))

9 tháng 3 2019

Incursion giỏi dữ vậy ta

27 tháng 7 2018

a, m Zn + m HCl = m ZnCl2 + m H2 (1)

b, Thay số vào (1),ta có:

            13 g + m HCl = 27,2 g + 0,4 g

            m HCl = 27,2 g + 0,4 g - 13 g      

            m HCl = 14,6 g

Chúc bạn học tốt.  

Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏 

Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là  2 góc trong cùng phía , nối A với C

Giải:

a) Vì AB//DC ( gt)

=> BAC = ACD ( so le trong )

Mà AC là pg BCD 

=> BCA = ACD

Mà BAC = ACD (cmt)

=> BCA = BAC

=> tam giác BAC cân tại B

B)

Giải : 

Vì AH vuông góc với DC

=> BHD = 90 độ

Vì AF vuông góc với DC

=> AFC = 90 độ

=> AFC= BHD = 90 độ

=> AF// BH(1)

Vì AB// DC ( gt)

=> AB//FC (2)

Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang

Vì tam giác ABC cân tại B ( cm ở ý a)

=> AB = BC = 5cm

Áp dụng định lý Py- ta - go ta có :

BC2= BG2+GC2

GC2=√25-- BG2

Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé