K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\overline A \) là biến cố: “Trong 4 viên bi chỉ có toàn bi đỏ hoặc bi xanh”.

Ta có \(n\left( \Omega  \right) = C_{10}^4 = 210\) và \(n\left( {\overline A } \right) = C\;_4^4 + C\;_6^4 = 16.\)

Do đó \(P\left( {\overline A } \right) = \frac{{16}}{{210}}=\frac{{8}}{{105}} \).

Suy ra \(P\left( A \right) = 1 - \frac{{8}}{{105}} = \frac{{97}}{{105}}\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn D.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Biến cố: “Bi lấy ra có màu xanh hoặc đen hoặc trắng” là biến cố: “Không xảy ra H” do đó là biến cố \(\overline H \).

b) \(\overrightarrow K \) là biến cố: “Không xảy ra K” tức là biến cố: “Bi lấy ra có màu đỏ hoặc màu đen”. Do đó biến cố: “Bi lấy ra màu đen” không phải là biến cố \(\overline K \).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có \(n\left( \Omega  \right) = C_{12}^6 = 924\). Gọi E là biến cố: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”. Có \(C_6^3 = 20\) cách chọn 3 viên bi trắng, có \(C_4^2 = 6\) cách chọn 2 viên bi đỏ, có \(2\) cách chọn 1 viên bi đen.

Theo quy tắc nhân, ta có: \(n\left( E \right) = 20.6.2 = 240\). Vậy \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_7^2.C_7^2 = 441\)

a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)

Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)

b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)

Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)

c) Gọi là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”

\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ

Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)

Chọn C

\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có...
Đọc tiếp

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có nghiệm A.2020 B.2017 C.2018 D.2019 C4: Trong mặt phẳng tọa độ oxy ,hai điểm l (-1,2);A (1,-1).Phương trình đường tròn tâm l và đi qua điểm A là : A.(x+1)^2+(y-1)^2=13 B.(X+1)^2+(Y-2)^2=13 C.(X-1)^2+(Y+2)^2=5 D.(X-1)^2+(Y+2)^3=20 C5: Trong mặt phẳng tọa độ oxy,đường thẳng 🔺️:2x-y+2023=0 có một véc tơ pháp tuyến là A.n=(1;2) B.n(2;1) C.n=(4;2) D.n=(-2;1)

Giúp vs b

1

5D

4B

3A

2C

12 tháng 5 2023

Thịnh ơi câu 1 kia?

Giả sử trong 4 viên đó có 4 viên đỏ

=>Có \(C^4_6=15\)

=>\(n\left(\overline{A}\right)=15\)

\(n\left(\Omega\right)=C^4_{15}=1365\)

=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)

a: Số cách chọn là:

\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)

b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)

Số cách chọn 9 viên ko có đủ 3 màu là:

\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)

=>Có 4939 cách