Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-1)(4x^2x+1)+(3+2x)(9-6x+4x^2)-7
= 8x^4+4x^3+2x+19
nha bạn chúc bạn học tốt nha
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(A=19-3x^2-24x\)
\(\Leftrightarrow A=-3\left(x^2+8x-\dfrac{19}{3}\right)\)
\(\Leftrightarrow A=-3\left(x^2+2x.4+16-\dfrac{67}{3}\right)\)
\(\Leftrightarrow A=-3\left[\left(x+4\right)^2-\dfrac{67}{3}\right]\)
\(\Leftrightarrow A=-3\left(x+4\right)^2+67\le67\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-3\left(x+4\right)^2=0\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy Max A là : 67 \(\Leftrightarrow x=-4\)
\(B=-x^2+6x-23\)
\(\Leftrightarrow B=-\left(x^2-6x+9\right)-14\)
\(\Leftrightarrow B=-\left(x-3\right)^2-14\le-14\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Max B là : \(-14\Leftrightarrow x=3\)
\(C=4\left(x-1\right)^2-9\left(x+2\right)^2\)
\(\Leftrightarrow C=4x^2-8x+4-9x^2-36x-36\)
\(\Leftrightarrow C=-5x^2-44x-32\)
\(\Leftrightarrow C=-5\left(x^2+\dfrac{44}{5}x+\dfrac{32}{5}\right)\)
\(\Leftrightarrow C=-5\left(x^2+2x.\dfrac{22}{5}+\dfrac{484}{25}\right)+64,8\)
\(\Leftrightarrow C=-5\left(x+\dfrac{22}{5}\right)^2+64,8\le64,8\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-5\left(x+\dfrac{22}{5}\right)^2=0\Leftrightarrow\left(x+\dfrac{22}{5}\right)^2=0\Leftrightarrow x+\dfrac{22}{5}=0\)
\(\Leftrightarrow x=-\dfrac{22}{5}\)
Vậy Max C là : 64 , 8 \(\Leftrightarrow x=-\dfrac{22}{5}\)
\(E=\left(x+2\right)^2-2x^2+8\)
\(\Leftrightarrow E=x^2+4x+4-2x^2+8\)
\(\Leftrightarrow E=-x^2+4x+12\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+16\)
\(\Leftrightarrow E=-\left(x-2\right)^2+16\le16\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Max E là : \(16\Leftrightarrow x=2\)
\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4\left(x^2+6x+9\right)}\)
\(=\frac{1}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4}\)
\(=\frac{2x^2-4x-2}{4x^2-8x+4}\)
\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{x^2+2\left(x\right)\left(3\right)+3^2}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2x^2+4x-2}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4\left(x^2+2\left(x\right)\left(3\right)+3^2\right)}\)
\(=\frac{1}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4}\)
\(=\frac{1.2\left(x^2-2x-1\right)}{\left(x-1\right)^2.4}\)
\(=\frac{2\left(x^2-2x-1\right)}{4\left(x-1\right)^2}\)
\(=\frac{x^2-2x-1}{2\left(x-1\right)^2}\)
\(A=x^2-6x+15\)
\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )
\(A=\left(x-3\right)^2+6\)
vì ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge6\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin = 6 <=> x = 3
\(B=2x^2-10x+8\)
\(B=2\left(x^2-5x+4\right)\)
\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)
\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)
\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)
Vì 2( x - 5/2 )2 luôn >= 0 với mọi x
\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy Bmin = -9/2 <=> x = 5/2
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!