\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Đề ở mẫu thứ 3 là \(\sqrt{xz}+12\sqrt{z}+12\) mới đúng

Ta có: \(\sqrt{xyz}=12\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}.\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}.\sqrt{x}+\sqrt{xyz}}\)\(=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{y}+\sqrt{yz}}=1\)

9 tháng 1 2018

đậu xanh sửa thành z mak vẫn ghi x

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

14 tháng 1 2020

Áp dụng BĐT AM - GM:

\(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{1.x.y}}=\sqrt{3xy}\)

\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)

Tương tự: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}\); \(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)

\(\Rightarrow S\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{3}\left(\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\ge\sqrt{3}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\)

\(\Rightarrow min_S=3\sqrt{3}\Leftrightarrow x=y=z=1\)

5 tháng 2 2020

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

Cộng theo từng vế 

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)

Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số :

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

5 tháng 2 2020

Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)

=> \(x+y+z\ge1\)

Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = y = z =1/3

Vậy min A = 1/2 <=> x = y = z = 1/3

2 tháng 6 2018

min hay max bạn

6 tháng 10 2019

Mk nghĩ là x3,y3,z3.

Áp dụng BĐT AM-GM:

\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)

Áp dụng BĐT Cauchy-Schwart:

\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)

gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)

Đặt t=x+y+z\(\left(t\ge3\right)\)

Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)

Có :\(t^2-3t+18>0\)

\(\Rightarrow2t^2\ge t^2-3t+18\)

\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)

Vậy min =1

Dấu = xra khi x=y=z=1.

#Walker

Kiểm tra giùm em đúng ko ạ Akai Haruma

24 tháng 10 2019

@Nguyễn Việt Lâm

@Lê Thị Thục Hiền

@Phạm Minh Quang

24 tháng 10 2019

mất dạy nỏ đi hk