\(Cho\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\)

CMR (a+b)(b-c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

Áp dụng bđt bu nhi a ta có 

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(-2-c\right)^2\le2\left(2-c^2\right)\)

=> \(c^2+4c+4\le4-2c^2\)

=> \(3c^2+4c\le0\Rightarrow c\left(3c+4\right)\le0\Rightarrow-\frac{4}{3}\le c\le0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)Ta...
Đọc tiếp

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Ta có:\(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(=-1\)

TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c\)

Ta có: \(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=2.2.2=8\)

Vậy .... ( ko bít ghi kiểu gì luôn -.- )

0
25 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

15 tháng 1 2017

Ta có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Leftrightarrow a^2+b^2-c^2=-2ab\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2-a^2c^2-b^2c^2\right)=4a^2b^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

Ta lại có: \(a^2+b^2+c^2=2009\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2009^2\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=2009^2\)

\(\Leftrightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)

26 tháng 2 2019

thanhs

12 tháng 12 2018

Chieu nha

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>