\(\frac{x}{a}\)+\(\frac{y}{b}\)+\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\cdot\frac{ayz+bxz+cxy}{abc}=1-2\cdot\frac{0}{abc}=1\)

=>đpcm

14 tháng 12 2018

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=2^2\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{abz+bcx+acy}{xyz}=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{0}{xyz}=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)

Vậy \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à

17 tháng 1 2017

Lạ nhỉ mình trả lời rồi mà

ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử

\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)

Chia hai vế cho (x+y+z khác 0) chú ý => dpcm

17 tháng 1 2017

quái lại câu 1 đâu 

(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không

chia hai vế cho abc/2

2/bc+2/ac+2/ab=2 (*)

đăt: 1/a=x; 1/b=y; 1/c=z

ta có

x+y+z=k (**)

x^2+y^2+z^2=k(***)

lấy (*)+(***),<=>(x+y+z)^2=2+k

=> k^2=2+k

=> k^2-k=2 

k^2-k+1/4=1/4+2=9/4

\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)

Mình chưa test lại đâu bạn tự test nhé

14 tháng 12 2016

Ta có

\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)

\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)

Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)

Dấu = xảy ra khi x = y = z = 0

Với x = y = z = 0 thì

\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)

\(\Leftrightarrow0=0\)(đúng)

\(\Rightarrow\)ĐPCM

2 tháng 4 2019

bình phương phương trình 1 theo công thức: (a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0

quy đồng phương trình 2 đc ayz+bxz+cxy=0

rồi đc kết quả cuối cuungf

2 tháng 4 2019

Đặt \(\hept{\begin{cases}\frac{x}{a}=m\\\frac{y}{b}=n\\\frac{z}{c}=o\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{1}{m}\\\frac{b}{y}=\frac{1}{n}\\\frac{z}{c}=\frac{1}{o}\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}m+n+o=1\\\frac{1}{m}+\frac{1}{n}+\frac{1}{o}=0\end{cases}}\)

Ta có \(\frac{1}{m}+\frac{1}{n}+\frac{1}{o}=0\)

\(\Leftrightarrow\frac{mn+mo+no}{mno}=0\)

\(\Leftrightarrow mn+mo+no=0\)

Ta lại có: \(m+n+o=1\)

\(\Leftrightarrow\left(m+n+o\right)^2=1^2\)

\(\Leftrightarrow m^2+n^2+o^2+2\left(mn+mo+no\right)=1\)

\(\Leftrightarrow m^2+n^2+o^2+2.0=1\)

\(\Leftrightarrow m^2+n^2+o^2=1\)

\(\Leftrightarrow\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2=1\left(ĐPCM\right)\)

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98