Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/-4=y/-7=z/3
=-2x+y+5z/-2.(-4)+(-7)+5.3
= 2x-3y-6z/2.(-4)-3.(-7)-6.3
=> -2x+y+5z/16=2x-3y-6z/-5
=> -2x+y+5z/2x-3y-6z
=16/-5
Vậy A = 16/-5
Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
=(8k-7k+15k)/(-8k+21k-18k)
=16k/-5k
=16/-5
Vậy A=-16/5
Thôi khó lắm, bn hỏi cô giáo đi .
Mik thực sự không biết làm .
Bài này chỉ có những người lớp 7, 8, 9 mới làm đc .
Mik mới chỉ có lớp ..... 6 mà thôi !
Bạn thông cảm cho mik nha ............!!
Đặt \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;c=3k\) (1)
Thay (1) vào A ta đc:
\(A=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\frac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\frac{k\left[8+\left(-7\right)+15\right]}{k\left[-8+21+\left(-18\right)\right]}\)
\(\Rightarrow A=\frac{k16}{-5k}\)
\(\Rightarrow A=\frac{-16}{5}\)
Vậy \(A=\frac{-16}{5}\)
a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.
b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24
Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.
a)Ta có:Ta có x/5 = y/4 = z/3
Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9
Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22
(tính chất của dãy tỉ số bằng nhau)
Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6
Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5)
=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3
b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp
vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)
=> x = -4k ; y = -7k, z = 3k
\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)
\(=\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)
nhớ tick 9 cái ****
đặt\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=-4k\\y=-7k\\z=3k\end{cases}}\). Thay vào A ta được:
\(A=-\frac{2\times\left(-4k\right)+\left(-7k\right)+5\times\left(3k\right)}{2\times\left(-4k\right)-3\times\left(-7k\right)-6\times\left(3k\right)}=-\frac{-8k-7k+15k}{-8k+21k-18k}=-\frac{0}{-5k}=0\)
Vậy A=0