Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
a. Câu hỏi của Nguyễn Ngọc Quế Anh - Toán lớp 7 - Học toán với OnlineMath
mk làm câu a thôi, b dài nhưng tương tự
Gọi a/b=c/d=k =>a=bk ; c=dk
=>\(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2bk+3b\right)^2}{\left(3bk-4b\right)^2}=\frac{\left[b\left(2k+3\right)\right]^2}{\left[b\left(3k-4\right)\right]^2}=\frac{b^2\left(2k+3\right)^2}{b^2\left(3k-4\right)^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(1)
=>\(\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}=\frac{\left(2dk+3d\right)^2}{\left(3dk-4d\right)^2}=\frac{\left[d\left(2k+3\right)\right]^2}{\left[d\left(3k-4\right)\right]^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(2)
Từ (1);(2)=> đpcm
Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html
\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
nên 2 phân số trên bằng nhau (đpcm)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)
<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)
<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)
Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)
<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)
Từ 1 và 2 => đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2\left(bk^2\right)-3bkb+5b^2}{2b^2+3bkb}=\frac{2b^2.k^2-3kb^2+5b^2}{2b^2+3b^2.k}\)\(=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{2+3k}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)\(=\frac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3dkd}\)
Tương tự nhóm tiếp là ra
=>bằng nhau
Mình hướng dẫn thôi. Chứ giờ đang bận.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\).Rồi thay a = kb; c=kd vào từng vế. Thấy hai vế bằng nhau => đpcm
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{2a^2}{2c^2}=\frac{5b^2}{5d^2}=\frac{3ab}{3ab}=\frac{3cd}{3cd}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2a^2}{2c^2}=\frac{5b^2}{5d^2}=\frac{3ab}{3ab}=\frac{3cd}{3cd}=\frac{2a^2-3ab+5b^2}{2b^2-3cd+5d^2}=\frac{2b^2+3ab}{2d^2+3cd}\)
\(=>\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)