Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)
\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)
\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)
\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất tỉ số bằng nhau, ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
a) \(\frac{x}{7}=\frac{18}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{9}{7}\)
\(\Rightarrow x=7\)
Vậy x=7
b)\(6:x=1\frac{3}{4}:5\)
\(\frac{6}{x}=\frac{7}{4}:5\)
\(\frac{6}{x}=\frac{7}{20}\)
\(\Rightarrow6.20=7x\)
\(\Rightarrow120=7.x\)
\(\Rightarrow x=\frac{120}{7}\)
Vậy \(x=\frac{120}{7}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d.\left(2k+13\right)}{d.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) khi: \(\frac{a}{b}=\frac{c}{d}\)
-------------------------------------- VẼ VẠCH KẺ NHƯ THẾ NÀY NÈ
/hoi-dap/question/62675.html
Bạn tham khảo nhé! Mình đã làm ở đây rồi
a) \(\left|x-30\right|-15=0\)
\(\Rightarrow\left|x-30\right|=15\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-30=15\\x-30=-15\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=45\\x=15\end{array}\right.\)
\(a.\)
\(\left|x-30\right|-15=0\)
\(\Rightarrow\left|x-30\right|=0+15=15\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-30=15\\x-30=-15\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=15+30=45\\x=-15+30=15\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=45\\x=15\end{array}\right.\)
\(b.\)
\(\left|20-x\right|-5=10\)
\(\Rightarrow\left|20-x\right|=10+5=15\)
\(\Rightarrow\left[\begin{array}{nghiempt}20-x=15\\20-x=-15\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=20-15=5\\x=-20-15=-35\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=5\\x=-35\end{array}\right.\)
\(c.\)
\(\left|20-x\right|+6=0\)
\(\Rightarrow\left|20-x\right|=0-6=-6\)
\(\Rightarrow x\in\varnothing\)
\(d.\)
\(\left|x-50\right|=0\)
\(\Rightarrow x-50=0\)
\(\Rightarrow x=0+50=50\)
Vậy \(x=50\)
\(e.\)
\(\frac{\left|x-10\right|}{30}=3\)
\(\Rightarrow\left|x-10\right|=3.30=90\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-10=90\\x-10=-90\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=90+10=100\\x=-90+10=-80\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=100\\x=-80\end{array}\right.\)
* Với \(a=1\) ta thấy BĐT đúng.
* Ta xét khi \(a>1\)
Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).
Khi đó ta có
Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)
Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)
Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)
Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được
\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để B lớn nhất thì \(\frac{12}{x^2+3}\) lớn nhất hay x2 + 3 nhỏ nhất
Có: x2 + 3 \(\ge3\)
Dấu "=" xảy ra khi và chỉ khi x2 = 0 => x = 0
Khi x = 0, \(B=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)
Vậy \(B_{Max}=5\) khi và chỉ khi x = 0
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=> Mỗi phân số có giá trị bằng 1 / 2
Mọi người nhớ giúp mình nhá///Thanks nhìu