Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
=> (2a + b)(c - 2d) = (a - 2b)(2c + d)
=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc - 2bd
=> -4ad + bc = ad - 4bc
=> -4ad - ad = -4bc - bc
=> -5ad = - 5bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
Theo bài ra ta có :
\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)
\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)
\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
a)
i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)
Chúc bạn học tốt!
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
a)
i) theo đề ta có ad=bc
ta có a(c+d) = ac+ad
ta có (a+b)c = ac+bc
mà ad = bc
\(\frac{a}{a+b}=\frac{c}{c+d}\)
các bạn ơi mình không hiểu sao câu ii mình ra thế này
ii) đặt \(\frac{a}{b}=\frac{c}{d}=m\)\(\Rightarrow\)a=mb ; c=dm
Ta có \(\frac{a-b}{c-d}\)= \(\frac{mb-b}{md-d}\)=\(\frac{b\left(m-1\right)}{d\left(m-1\right)}\)=\(\frac{b}{d}\)
Ta có \(\frac{a+c}{b+d}\)=\(\frac{mb+md}{b+d}\)=m
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
\(\frac{a}{a+2b}=\frac{c}{c+2d}\Rightarrow ac+2ad=ac+2bc\Rightarrow2ad=2bc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{b}{2a-b}=\frac{d}{2c-d}\Rightarrow2cb-bd=2ad-bd\Rightarrow2ad=2cb\Rightarrow ad=cd\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^2b}{c^2d}=\frac{2b^3}{2d^3}=\frac{a^3+2b^3}{c^3+2d^3}\)
=>đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)
= \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)
tíc mình nhé! Thanks
Đặt a/b=c/d=k=>a=kb;c=kd
Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)
3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)
Từ (1) và (2) =>....
ta có : ab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bcab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bc
⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd
⇔(c+2d)(a−2b)=(a+2b)(c−2d)⇔a+2bc+2d=a−2bc−2d(đpcm)
Bạn ơi! Phải chứng minh \(\frac{a}{b}=\frac{c}{d}\) chứ!