\(Cho:\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(Tính:\frac{xy}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Dễ dàng chứng minh được : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

Ta có \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)( Vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

24 tháng 7 2016

bn chứng minh dj

Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\frac{1}{z}^3\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{z^3}\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{3}{xyz}.\)Vì \(\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

Mặt khác : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)`

\(A=\frac{yz}{x^2}+2yz+\frac{xz}{y^2}+2xz+\frac{xy}{z^2}+2xy\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}+2\left(xy+yz+xz\right)\)Vì x , y , z khác 0 .

\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)Vì \(xy+yz+xz=0\)

\(=xyz\cdot\frac{3}{xyz}\)Vì \(\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\frac{3}{xyz}\)

\(=3\)

Vậy \(A=3\)

18 tháng 8 2016

mk tưởng chố \(\left(\frac{1}{x}+\frac{1}{y}\right)^3\)phải bằng\(\left(\frac{-1}{z}\right)^3\)chứ

26 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(xy+yz+xz\right)\left(...\right)}{x^2y^2z^2}=0\)

15 tháng 7 2016

Đặt bài toán phụ : Chứng minh nếu \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

Thật vậy :

 \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)

\(a+b=-c\)

\(b+c=-a\)

\(c+a=-b\)

\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=-3\left(-c\right)\left(-b\right)\left(-a\right)\)

\(=3abc\)

Trở lại bài toán chính :

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)

\(\Rightarrow xy+xz+yz=0\)

\(\Rightarrow\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3\left(xy\right)\left(xz\right)\left(yz\right)=3x^2y^2z^2\)

Lại có:

\(P=\frac{xy.y^2x^2}{x^2y^2z^2}+\frac{xz.z^2.x^2}{x^2y^2z^2}+\frac{z^2.y^2.yz}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3}{x^2y^2z^2}+\frac{\left(xz\right)^3}{x^2y^2z^2}+\frac{\left(yz\right)^3}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)}{x^2y^2z^2}\)

Thay \(\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3x^2y^2z^2;\)ta có:

\(P=\frac{3x^2y^2z^2}{x^2y^2z^2}\)

\(=3\)

Vậy \(P=3.\)

15 tháng 7 2016

 Vì 1/x + 1/y + 1/z = 0 nên lần lượt nhân vs x; y; z ta có: 
1 + x/y + x/z = 0 (1) 
1 + y/z + y/x = 0 (2) 
1 + z/x + z/y = 0 (3) 
Từ (1); (2); (3) suy ra : x/y + y/z + z/x + x/z + y/x + z/y = - 3 (*) 
Mặt khác : 1/x + 1/y + 1/z = 0 nên quy đồng lên ta có: 
(xy + yz + zx)/xyz = 0 hay xy + yz + zx = 0 
Hay : (1/x^2 + 1/y^2 + 1/z^2).(xy + yz + zx) = 0 
khai triển ra : 
yz/x^2 + zx/y^2 + xy/z^2 + x/y + y/z + z/x + x/z + y/x + z/y = 0 
Vậy : yz/x^2 + zx/y^2 + xy/z^2 = - (x/y + y/z + z/x + x/z + y/x + z/y) = 3 (theo (*))

15 tháng 7 2016

Đầu tiên cần chứng minh khẳng định sau : Nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)

Thật vậy : Xét \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Áp dụng khẳng định trên với \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)được

\(P=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

Chú ý : Đề bài cần thêm điều kiện x,y,z khác 0

27 tháng 11 2018

Câu hỏi của Vũ Thảo Vy - Toán lớp 8 - Học toán với OnlineMath tham khảo

17 tháng 6 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz--xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

CMTT:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A=\(\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

\(A=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

\(xy+yz+xz=0\)

Từ \(\Rightarrow\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy A=0

14 tháng 8 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\frac{-1}{z^3}\)

\(\frac{1}{x^3}+\frac{3}{x^2y}+\frac{3}{xy^2}+\frac{1}{y^3}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{3}{xyz}\)

\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\frac{3}{xyz}.xyz\)

\(\Rightarrow\frac{yz}{x^2}+\frac{xy}{z^2}+\frac{xz}{y^2}=3\)

14 tháng 8 2017

khi gấp lên mấy lần thì nó vẫn bằng 0 nên biểu thức đó bằng 0