Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPAN có
PM là đường trung tuyến
PM là đường cao
DO đó: ΔPAN cân tại P
b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPNA có
PM là đường trung tuyến
NB là đường trung tuyến
PM cắt NB tại G
Do đó; G là trọng tâm của ΔPAN
Suy ra: PG=2/3PM=2(cm)
a, xét tam giácNMD và tam giác PQD có : MD = DQ (gt)
góc MDN = góc QDP (đối đỉnh)
ND = DP do D là trung điểm của PN (gt)
=> tam giác NMD = tam giác PQD (c-g-c)
=> MN = PQ (đn)
b, tam giác NMD = tam giác PQD (câu a)
=> góc MND = góc DPQ (đn) mà 2 góc này slt
=> MN // PQ (tc)
a,b) Xét tam giác MNP có
MN=MP
Suy ra MNP cân => MD là đg trung trực (tc)
=> MD NP
Xét tứ giác MPQN có
D là tđ MQ
D là tđ NP
MD NP
Suy ra MPQN là hình thoi
=> MN=PQ ; MN || PQ
c) Ta có
MN || PQ => MN || PE ( P thuộc EQ)
ME || NP (gt)
Suy ra MEPN là hình bình hành
=> MN= EP (tc)
Mà MN=PQ (cmt) => PE=PQ => P là trung điểm QE (đpcm)
Đ/S:......
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy