\(\dfrac{a+\overline{bc}}{\overline{abc}}=\dfrac{b+\overline{ca}}{\overline{bca}}=\dfrac{c+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:

\(k=\dfrac{\overline{ab}}{\overline{abc}}=\dfrac{\overline{bc}}{\overline{bca}}=\dfrac{\overline{ca}}{\overline{cab}}=\dfrac{\overline{ab}+\overline{bc}+\overline{ca}}{\overline{abc}+\overline{bca}+\overline{cab}}\)

\(=\dfrac{10a+b+10b+c+10c+a}{100a+10b+c+100b+10c+a+100c+10a+b}\)

\(=\dfrac{11a+11b+11c}{111a+111b+111c}=\dfrac{11.\left(a+b+c\right)}{111.\left(a+b+c\right)}=\dfrac{11}{111}\)

Vậy \(k=\dfrac{11}{111}\)

Chúc bạn học tốt!!!

31 tháng 12 2017

Ta có:

\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)

\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)

\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)

\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)

\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)

Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)