Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
2.
a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)
Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)
Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !
A=\(\dfrac{5}{4}\).(5-\(\dfrac{4}{3}\)).(\(-\dfrac{1}{11}\))
= \(\dfrac{5}{4}\).\(\dfrac{11}{3}\).(\(-\dfrac{1}{11}\))
=\(\dfrac{5}{4}\).[\(\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\text{]}\)
=\(\dfrac{5}{4}.\dfrac{1}{3}\)
=\(\dfrac{5}{12}\) (1)
B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\) =\(\dfrac{3}{4}:\text{[}\left(-12\right).\left(-\dfrac{2}{3}\right)\text{]}\)
=\(\dfrac{3}{4}:8\) =\(\dfrac{3}{4}.\dfrac{1}{8}\)=\(\dfrac{3}{32}\)(2)
C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) =\(\dfrac{5}{4}:\text{[}\left(-15\right).\left(-\dfrac{2}{5}\right)\text{]}\)
=\(\dfrac{5}{4}:6=\dfrac{5}{4}.\dfrac{1}{6}=\dfrac{5}{24}\left(3\right)\)
D=(-3).\(\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\) =(-3).\(\left(-\dfrac{7}{12}\right)\):(-7)=\(\dfrac{7}{4}:\left(-7\right)\)=\(\dfrac{7}{4}\).\(\left(\dfrac{-1}{7}\right)\)=\(\dfrac{-1}{4}\) (4)
Từ (1),(2),(3)và(4)=>Ta có thể sắp xếp các kết quả trên theo thứ tự tăng dần là:
(Bạn tự làm nhé! mình bận đi học rồi)
\(A=\dfrac{5}{4}\cdot\dfrac{15-4}{3}\cdot\dfrac{-1}{11}=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}\)=-50/120
\(B=\dfrac{3}{4}\cdot\dfrac{-1}{12}\cdot\dfrac{-2}{3}=\dfrac{3\cdot2}{4\cdot12\cdot3}=\dfrac{2}{4\cdot12}=\dfrac{1}{24}\)=5/120
\(C=\dfrac{5}{4}\cdot\dfrac{-1}{15}\cdot\dfrac{-2}{5}=\dfrac{2}{4\cdot15}=\dfrac{1}{30}\)=4/120
\(D=3\cdot\dfrac{8-15}{12}\cdot\dfrac{-1}{7}=\dfrac{1}{4}\)=30/120
Vì -50<4<5<30
nên A<C<B<D
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Từ đó, ta được:\(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(bk+dk\right)^3}{\left(b+d\right)^3}=\dfrac{\left[k\left(b+d\right)\right]^3}{\left(b+d\right)^3}=\dfrac{k^3.\left(b+d\right)^3}{\left(b+d\right)^3}=k^3\left(1\right)\) \(\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}=\dfrac{\left(bk-dk\right)^3}{\left(b-d\right)^3}=\dfrac{\left[k\left(b-d\right)\right]^3}{\left(b-d\right)^3}=\dfrac{k^3.\left(b-d\right)^3}{\left(b-d\right)^3}=k^3\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}\)