\(Cho\dfrac{a}{b}=\dfrac{c}{d}\)

a) \(\dfrac{2016a-2017b}{20...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(VT=\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{a\left(7a+5c\right)}{a\left(7a-5c\right)}=\dfrac{7ck+5c}{7ck-5c}=\dfrac{c\left(7k+5\right)}{c\left(7k-5\right)}=\dfrac{7k+5}{7k-5}\left(1\right)\)

\(VP=\dfrac{7b^2+5bd}{7b^2-5bd}=\dfrac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\dfrac{7dk+5d}{7dk-5d}=\dfrac{d\left(7k+5\right)}{d\left(7k-5\right)}=\dfrac{7k+5}{7k-5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\left(đpcm\right)\)

Vậy \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)

11 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)

\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)

\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)

\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)

\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)

Hình như sai sai

22 tháng 11 2017

Với \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{b}.\)\(\dfrac{c}{d}=\dfrac{ac}{bd}=\dfrac{aa}{bb}=\dfrac{a^2}{b^2}\)
Ta có : \(\dfrac{a^2}{b^2}=\dfrac{ac}{bd}\)

=> \(\dfrac{7a^2}{7b^2}=\dfrac{5ac}{5bd}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{7a^2}{7b^2}=\dfrac{5ac}{5bd}=\dfrac{7a^2+5ac}{7b^2+5bd}=\dfrac{7a^2-5ac}{7b^2-5bd}\) (1)

Từ (1) => \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2-5bd}{7b^2-5bd}\) (ĐPCM)

13 tháng 7 2018

Ta có :

\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\Leftrightarrow\dfrac{7a^2+5ac}{7b^2+5bd}=\dfrac{7a^2-5ac}{7b^2-5bd}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\\ Thaya=bk;c=dk,tacó:\)

\(\dfrac{7a^2+5ac}{7b^2+5bd}=\dfrac{7\cdot b^2\cdot k^2+5\cdot bk\cdot dk}{7b^2+5bd}=\dfrac{k^2\cdot\left(7b^2+5ac\right)}{7b^2+5ac}=k^2\left(1\right)\)

\(\dfrac{7a^2-5ac}{7b^2-5bd}=\dfrac{7\cdot b^2\cdot k^2-5\cdot bk\cdot dk}{7b^2-5bd}=\dfrac{k^2\cdot\left(7b^2-5ac\right)}{7b^2-5ac}=k^2\left(2\right)\)

từ (1) và (2) \(\RightarrowĐpcm\)

1 tháng 8 2022

vì sao phải đổi mẫu tử của 2 phs kia ?

 

25 tháng 7 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2,k}=\dfrac{b^2}{d^2}\)(3)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(4)

từ (3) (4) \(\Rightarrow\)......

c) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\) (5)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\left(6\right)\)

từ (5) (6)\(\Rightarrow\)...............

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I  : Số hữu tỉ. Số thực

12 tháng 3 2018

Ta có:

a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d

a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d

=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

11 tháng 2 2019

hok trường chuyên mak dell bt bài ni ak:))

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay vào ta được:\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bk\cdot dk}{7b^2k^2-5bk\cdot dk}=\frac{bk^2\left(7b+5d\right)}{bk^2\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(1\right)\)

\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

11 tháng 2 2019

Ta có : a/b = c/d => a/c = b/d

Đặt \(\frac{a}{c}=\frac{b}{d}=k\) => \(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Khi đó, ta có: \(\frac{7.\left(ck\right)^2+5c^2k}{7\left(ck\right)^2-5c^2k}=\frac{7.c^2.k^2+5.c^2.k}{7.c^2.k^2-5.c^2.k}=\frac{\left(7k+5\right).c^2.k}{\left(7k-5\right).c^2.k}=\frac{7k+5}{7k-5}\)(1)

                     \(\frac{7.\left(dk\right)^2+5.d^2.k}{7\left(dk\right)^2-5.d^2.k}=\frac{7.d^2.k^2+5.d^2.k}{7.d^2.k^2-5.d^2.k}=\frac{\left(7k+5\right).d^2.k}{\left(7k-5\right).d^2.k}=\frac{7k+5}{7k-5}\) (2)

Từ (1) và (2) suy ra (Đpcm)