Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\)
\((\dfrac{a+b}{c+d})^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\left(\dfrac{b}{d}\right)^3\left(1\right)\)
\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\dfrac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\dfrac{b^3}{d^3}=\left(\dfrac{b}{d}\right)^3\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3-b^3}{c^3-d^3}\)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3(*)\)
Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow \left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Leftrightarrow \left(\frac{a}{b}\right)^3=\frac{a}{d}(**)\)
Từ \((*); (**)\Rightarrow \left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a+b+c}{b+c+d}\\\dfrac{b}{c}=\dfrac{a+b+c}{b+c+d}\\\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\) (đpcm)
bn cũng có thể tham khảo
https://hoc24.vn/hoi-dap/question/466226.html
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Từ đó, ta được:\(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(bk+dk\right)^3}{\left(b+d\right)^3}=\dfrac{\left[k\left(b+d\right)\right]^3}{\left(b+d\right)^3}=\dfrac{k^3.\left(b+d\right)^3}{\left(b+d\right)^3}=k^3\left(1\right)\) \(\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}=\dfrac{\left(bk-dk\right)^3}{\left(b-d\right)^3}=\dfrac{\left[k\left(b-d\right)\right]^3}{\left(b-d\right)^3}=\dfrac{k^3.\left(b-d\right)^3}{\left(b-d\right)^3}=k^3\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}\)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)