Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+4}{a-4}=\dfrac{b+5}{b-5}\)
=>\(\left(a+4\right)\left(b-5\right)=\left(a-4\right)\left(b+5\right)\)
\(\Leftrightarrow ab-5a+4b-20=ab+5a-4b-20\)
\(\Leftrightarrow-10a=-8b\)
=>a/b=4/5
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)
nhân ra ik ròi suy ra đpcm :D
Ta có :
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
a, Theo bài ta có :
\(\dfrac{a}{b}=\dfrac{10}{3}\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{3}\)
Đặt :
\(\dfrac{a}{10}=\dfrac{b}{3}=k\left(k\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)
Ta có :
\(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3.10k-2.3k}{10k-3.3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{1k}=24\)
Vậy ...........
a-b=3=>a=b+3 Thay a=b+3 vào B
\(\Rightarrow B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)
\(\Rightarrow B=1-\dfrac{4b-b+12}{3b+9+3}=1-1=0\)
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Leftrightarrow\left(a+5\right).\left(b-6\right)=\left(a-5\right).\left(b+6\right)\)
\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)
\(\Rightarrow-6a+5b=6a-5b\Rightarrow-6a+10b=6a\Rightarrow10b=12a\Rightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\left(đpcm\right)\)
Sửa câu a:
(x - 2)2 - 36 = 0
(x - 2 - 6)(x - 2 + 6) = 0
(x - 8)(x + 4)= 0
\(\Leftrightarrow \begin{bmatrix} x - 8= 0 & & \\ x + 4 = 0 & & \end{bmatrix}\)
\(\Leftrightarrow \begin{bmatrix} x = 8 & & \\ x = - 4 & & \end{bmatrix}\)
pn bỏ dấu ngoặc bên phải nhé
Vậy x = 8; x = - 4
2:
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}=\dfrac{a+5-a+5}{b+6-b+6}=\dfrac{10}{12}=\dfrac{5}{6}=\dfrac{a+5+a-5}{b+6+b-6}=\dfrac{2a}{2b}=\dfrac{a}{b}\)
Từ đó suy ra \(\dfrac{a}{b}=\dfrac{5}{6}\)
\(\RightarrowĐPCM\)
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Rightarrow ab+5b-6a-30=ab-5b+6a-30\)
\(\Rightarrow5b-6a=-5b+6a\)
\(\Rightarrow10b=12a\)
\(\Rightarrow5b=6a\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\left(đpcm\right)\)
Vậy \(\dfrac{a}{b}=\dfrac{5}{6}\)
\(\dfrac{a+5}{a-5}=\dfrac{a+6}{a-6}\)suy ra \(\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(a+6\right)\)
suy ra: \(6a=5b\)
suy ra: \(\dfrac{a}{b}=\dfrac{5}{6}\)