Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a ; b ; c ; d > 0
=> a + b + c + d > 0
=> 2(a + b + c + d) > 0
=> 2a + 2b + 2c + 2d > 0
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
=> \(\frac{a}{2b}=\frac{1}{2}\Rightarrow2a=2b\Rightarrow a=b\)
Tương tự,ta được a = b = c = d
Khi đó A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)
= \(\frac{2013a-2012a}{2a}+\frac{2013b-2012b}{2b}+\frac{2013c-2012c}{2c}+\frac{2013d-2012d}{2d}\)(Vì a = b = c = d)
= \(\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Bài giải
a, \(\left| |3x-\frac{7}{3} | -2\right|=7\)
\(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|-2=-7\\|3x-\frac{7}{3}|-2=7\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|=-5\text{ ( loại) }\\|3x-\frac{7}{3}|=9\end{cases}}\) \(\Rightarrow\text{ }\left|3x-\frac{7}{3}\right|=9\) \(\Rightarrow\orbr{\begin{cases}3x-\frac{7}{3}=-9\\3x-\frac{7}{3}=9\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x=\frac{-20}{3}\\3x=\frac{34}{3}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{20}{9}\\x=\frac{34}{9}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{20}{9}\text{ ; }\frac{34}{9}\right\}\)
Giải:
Ta có: \(\dfrac{2012a+b+c+d}{a}=\dfrac{a+2012b+c+d}{b}=\dfrac{a+b+2012c+d}{c}\)
\(=\dfrac{a+b+c+2012d}{d}\)
\(\Rightarrow\dfrac{2012a+b+c+d}{a}-2011=\dfrac{a+2012b+c+d}{b}-2011\)
\(=\dfrac{a+b+2012c+d}{c}-2011=\dfrac{a+b+c+2012d}{d}-2011\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\) ta có:
\(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
\(\Rightarrow M=\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(a+d\right)}{a+d}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}=-1\)
+) Xét \(a+b+c+d\ne0\)
\(\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
\(\Rightarrow M=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=1\)
Vậy nếu \(a+b+c+d=0\) thì M = -1
nếu \(a+b+c+d\ne0\) thì M = 1
có dãy tỉ số bằng nhau đó thì ta cộng vào rồi rút gọn thì được kết quả là \(\dfrac{2015}{2011}\) nó sẽ bằng với từng biểu thức đó.
Mẫu sẽ cố 2011=2011a; 2011=2011b; 2011=2011c; 2011=2011d
=> a = b = c = d = 1
=> M = 4
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;
\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)
\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}\cdot4=2\)
Vậy \(A=2\)
Mình hướng dẫn thôi nhé:
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm
Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:
\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2(a+b+c+d)}=\frac{1}{2}\)
\(\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\Leftrightarrow a=b=c=d\)
Do đó:
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Vậy \(A=2\)
Ta có: \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
Vậy ....................