Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A
Áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC^2=20^2+15^2=625\)
\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)
\(\Delta AHB\)vuông tại H
\(\Rightarrow HA^2+HB^2=AB^2\)
\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)
\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)
\(\Delta AHC\)vuông tại H
\(\Rightarrow AH^2+CH^2=AC^2\)
\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)
\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)
A B C H
-Tam giác ABC vuông tại A
Áp dụng định lí Pytago
Ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)
-Tam giác ABH vuông tại H
Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)
- Tam giác AHC vuông tại H
Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)
Bài 1:
B A C I 12
Vì \(\Delta\)ABC đều nên AB = AC = BC = 12 cm
và \(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)
Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:
AB = AC (c/m trên)
\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)
=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)
=> BI = CI (2 cạnh t/ư)
mà BI + CI = 12
=> BI = CI = \(\frac{12}{2}\) = 6
Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:
AB2 = AI2 + BI2
=> 122 = AI2 + 62
=> AI2 = 122 - 62
=> AI2 = 108
=> AI = \(\sqrt{108}\)
Vậy AI = \(\sqrt{108}\).
Bài 1:
A B C I 1 2
Giải:
Vì t/g ABC đều nên AB = AC = BC = 12 cm
Xét \(\Delta AIB,\Delta AIC\) có:
\(AB=AC\) ( do t/g ABC đều )
\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )
\(\widehat{I_1}=\widehat{I_2}=90^o\)
\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )
\(\Rightarrow IB=IC\) ( cạnh t/ứng )
Mà \(BC=12\left(cm\right)\)
\(\Rightarrow IB=IC=6cm\)
Trong t/g AIB, áp dụng định lí Py-ta-go có:
\(BI^2+AI^2=AB^2\)
\(\Rightarrow6^2+AI^2=12^2\)
\(\Rightarrow AI^2=108\)
\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)
Vậy \(AI=\sqrt{108}cm\)
Hình (chỉ mag t/c minh họa)
20 5 12 A B C H
Áp dụng định lí Py-ta-go vào \(\Delta ABH\left(\widehat{H}=90^o\right)\) có:
\(AH^2+BH^2=AB^2.\)
mà \(AH=12cm\left(gt\right);BH=5cm\left(gt\right).\)
\(\Rightarrow12^2+5^2=AB^2.\)
\(\Rightarrow144+25=AB^2.\)
\(169=AB^2\Rightarrow AB=\sqrt{169}=13\left(cm\right).\)
Áp dụng định lí Py-ta-go vào \(\Delta AHC\left(\widehat{H}=90^o\right)\) có:
\(AH^2+HC^2=AC^2.\)
mà \(AH=12cm\left(gt\right);AC=20cm\left(gt\right).\)
\(\Rightarrow12^2+HC^2=20^2.\)
\(\Rightarrow144+HC^2=400.\)
\(\Rightarrow HC^2=400-144.\)
\(\Rightarrow HC^2=256\Rightarrow HC=\sqrt{256}=16\left(cm\right).\)
Ta có:
\(BH+HC=BC.\)
mà \(BH=5cm\left(gt\right);HC=16cm\left(cmt\right).\)
\(\Rightarrow5+16=BC.\)
\(\Rightarrow BC=21\left(cm\right).\)
Chu vi \(\Delta ABC\) là:
\(P_{\Delta ABC}=AB+AC+BC=13+21+20=54\left(cm\right).\)
Vậy..........
A B C H 12 5 20
Xét tam giác vuông ABH, theo định lí Pytago ta có:
\(AB^2=BH^2+AH^2=5^2+12^2=13^2\)
Nên AB = 13cm
Xét tam giác vuông AHC, theo định lí Pytago ta có:
\(HC^2=AC^2-AH^2=20^2-12^2=16^2\)
Nên HC = 16cm
Khi đó ta có chu vi tam giác ABC là:
\(AB+BC+CA=AB+BH+CH+CA=13+5+16+20=54\left(cm\right)\)
Vậy chu vi tam giác ABC là 54cm
Cho \(\Delta ABC\) cân tại A, \(AH\perp BC\) tại H. Chứng minh \(AB^2+AC^2+BC^2=CH^2+2.AH^2+5.BH^2\)
Ta cần chứng minh:
\(AB^2+AC^2+BC^2=CH^2+2AH^2+5BH^2\)
\(\Leftrightarrow2AB^2+BC^2=6BH^2+2AH^2\)
Mà ta có:
\(2AB^2+BC^2=2\left(AH^2+BH^2\right)+4BH^2\)
\(=6BH^2+2AH^2\)
Vậy ta có ĐPCM
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn
Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )
Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)
Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)
Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago )
\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)
A B C H
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=4\left(cm\right)\)
Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )
Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)
\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )