\(\Delta\)ABC vuông tại A,kẻ AH\(\perp\)BC ,biết AB=20cm,A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

\(\Delta ABC\)vuông tại A

Áp dụng định lí py-ta-go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC^2=20^2+15^2=625\)

\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)

\(\Delta AHB\)vuông tại H

\(\Rightarrow HA^2+HB^2=AB^2\)

\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)

\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)

\(\Delta AHC\)vuông tại H

\(\Rightarrow AH^2+CH^2=AC^2\)

\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)

\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)

13 tháng 2 2019


A B C H

-Tam giác ABC vuông tại A

Áp dụng định lí Pytago

Ta có: \(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)

-Tam giác ABH vuông tại H

Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)

- Tam giác AHC vuông tại H

Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)

19 tháng 1 2017

Bài 1:

B A C I 12

\(\Delta\)ABC đều nên AB = AC = BC = 12 cm

\(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)

Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:

AB = AC (c/m trên)

\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)

=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)

=> BI = CI (2 cạnh t/ư)

mà BI + CI = 12

=> BI = CI = \(\frac{12}{2}\) = 6

Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:

AB2 = AI2 + BI2

=> 122 = AI2 + 62

=> AI2 = 122 - 62

=> AI2 = 108

=> AI = \(\sqrt{108}\)

Vậy AI = \(\sqrt{108}\).

19 tháng 1 2017

Bài 1:

A B C I 1 2

Giải:

Vì t/g ABC đều nên AB = AC = BC = 12 cm

Xét \(\Delta AIB,\Delta AIC\) có:

\(AB=AC\) ( do t/g ABC đều )

\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )

\(\widehat{I_1}=\widehat{I_2}=90^o\)

\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )

\(\Rightarrow IB=IC\) ( cạnh t/ứng )

\(BC=12\left(cm\right)\)

\(\Rightarrow IB=IC=6cm\)

Trong t/g AIB, áp dụng định lí Py-ta-go có:

\(BI^2+AI^2=AB^2\)

\(\Rightarrow6^2+AI^2=12^2\)

\(\Rightarrow AI^2=108\)

\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)

Vậy \(AI=\sqrt{108}cm\)

7 tháng 1 2018

Hình (chỉ mag t/c minh họa)

20 5 12 A B C H

Áp dụng định lí Py-ta-go vào \(\Delta ABH\left(\widehat{H}=90^o\right)\) có:

\(AH^2+BH^2=AB^2.\)

\(AH=12cm\left(gt\right);BH=5cm\left(gt\right).\)

\(\Rightarrow12^2+5^2=AB^2.\)

\(\Rightarrow144+25=AB^2.\)

\(169=AB^2\Rightarrow AB=\sqrt{169}=13\left(cm\right).\)

Áp dụng định lí Py-ta-go vào \(\Delta AHC\left(\widehat{H}=90^o\right)\) có:

\(AH^2+HC^2=AC^2.\)

\(AH=12cm\left(gt\right);AC=20cm\left(gt\right).\)

\(\Rightarrow12^2+HC^2=20^2.\)

\(\Rightarrow144+HC^2=400.\)

\(\Rightarrow HC^2=400-144.\)

\(\Rightarrow HC^2=256\Rightarrow HC=\sqrt{256}=16\left(cm\right).\)

Ta có:

\(BH+HC=BC.\)

\(BH=5cm\left(gt\right);HC=16cm\left(cmt\right).\)

\(\Rightarrow5+16=BC.\)

\(\Rightarrow BC=21\left(cm\right).\)

Chu vi \(\Delta ABC\) là:

\(P_{\Delta ABC}=AB+AC+BC=13+21+20=54\left(cm\right).\)

Vậy..........

7 tháng 1 2018

A B C H 12 5 20

Xét tam giác vuông ABH, theo định lí Pytago ta có:

\(AB^2=BH^2+AH^2=5^2+12^2=13^2\)

Nên AB = 13cm

Xét tam giác vuông AHC, theo định lí Pytago ta có:

\(HC^2=AC^2-AH^2=20^2-12^2=16^2\)

Nên HC = 16cm

Khi đó ta có chu vi tam giác ABC là:

\(AB+BC+CA=AB+BH+CH+CA=13+5+16+20=54\left(cm\right)\)

Vậy chu vi tam giác ABC là 54cm

24 tháng 7 2018

Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

26 tháng 7 2018

chụp ảnh kiểu gì thế

4 tháng 10 2017

Ta cần chứng minh:

\(AB^2+AC^2+BC^2=CH^2+2AH^2+5BH^2\)

\(\Leftrightarrow2AB^2+BC^2=6BH^2+2AH^2\)

Mà ta có:

\(2AB^2+BC^2=2\left(AH^2+BH^2\right)+4BH^2\)

\(=6BH^2+2AH^2\)

Vậy ta có ĐPCM

1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

nên \(BC\cdot AH=AB\cdot AC\)

2: 

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=CH\cdot BC\)

Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn

Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)

Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )

Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)

Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)

Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago ) 

\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)

1 tháng 2 2021

                               A B C H

Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)

\(\Rightarrow AH=4\left(cm\right)\)

Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )

Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)

\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)

\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )