Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(HC=\dfrac{12^2}{9}=16\left(cm\right)\)
BC=9+16=25cm
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=20cm
b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
c: \(HA\cdot HM=BH^2\)
\(BE\cdot BA=BH^2\)
=>\(HA\cdot HM=BE\cdot BA\)
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{BA}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(HE=\sqrt{16\cdot9}=12\left(cm\right)\)
\(AH=\sqrt{16\cdot25}=20\left(cm\right)\)
a: góc B=90-40=50 độ
Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)
=>AC=7,66(cm)
b: \(BD\cdot EC\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE
Suy ra AB = AC
Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC
Vậy KHÔNG thể chứng minh được :|
a) Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có:
\(AB^2=BH.BC=BH\left(BH+HC\right)=3,6\left(3,6+6,4\right)=3,6.10=36\)
\(\Rightarrow AB=\sqrt{36}=6\)(cm)
\(AC^2=HC.BC=HC\left(BH+HC\right)=6,4\left(3,6+6,4\right)=6,4.10=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
\(AH^2=HB.HC=3,6.6,4=23,04\)
\(\Rightarrow AH=\sqrt{23,04}=4,8\left(cm\right)\)
b) Xét tứ giác AEHF có 3 góc vuông: \(\widehat{EAF};\widehat{AEH};\widehat{HFA}\)
=> Tứ giác AEHF là hình chữ nhật
=> EF=AH=4,8(cm)
c) Áp dụng hệ thức lượng vào tam giác vuông AHB, ta có:
\(AH^2=AE=AB\)(1)
Áp dụng hệ thức lượng vào tam giác vuông AHC, ta có:
\(AH^2=AF.AC\left(2\right)\)
Từ (1) và (2) suy ra: AE.AB=AF.AC
d) Theo kết quả câu c: \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ACB:\)
\(\widehat{EAF}=\widehat{BAC}=90^o\)
\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\left(cmt\right)\)
\(\Rightarrow\Delta AEF~\Delta ACB\left(c-g-c\right)\)