Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)
Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)
Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)
Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)
Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)
\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)
Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)
Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)
HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.
Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)
b.
a) Ta có \(\Delta ABC\) vuông tại \(A\left(gt\right).\)
=> \(\widehat{ABC}+\widehat{ACB}=90^0\) (tính chất tam giác vuông)
Mà \(\widehat{ABC}=60^0\left(gt\right)\)
=> \(60^0+\widehat{ACB}=90^0\)
=> \(\widehat{ACB}=90^0-60^0\)
=> \(\widehat{ACB}=30^0.\)
b) Xét 2 \(\Delta\) vuông \(ABD\) và \(ABC\) có:
\(\widehat{BAD}=\widehat{BAC}=90^0\)
\(AD=AC\left(gt\right)\)
Cạnh AB chung
=> \(\Delta ABD=\Delta ABC\) (cạnh huyền - cạnh góc vuông).
c) Gọi \(Bx\) là tia phân giác của \(\widehat{ABC}.\)
=> \(\widehat{ABx}=\widehat{xBC}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0.\)
Vì \(AC\perp EC\left(gt\right)\)
=> \(\widehat{ACE}=90^0\)
Hay \(\widehat{xCE}=90^0.\)
Mà
=> \(30^0+90^0=\widehat{BCE}\)
=> \(\widehat{BCE}=120^0.\)
Vì \(\Delta ABD=\Delta ABC\left(cmt\right)\)
=> \(\widehat{ABD}=\widehat{ABC}=60^0\) (2 góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{ABC}=\widehat{DBC}\)
=> \(60^0+60^0=\widehat{DBC}\)
=> \(\widehat{DBC}=120^0.\)
d) Theo câu c) ta có \(\left\{{}\begin{matrix}\widehat{ECB}=120^0\\\widehat{DBC}=120^0\end{matrix}\right.\)
=> \(\widehat{DBC}=\widehat{ECB}=120^0.\)
Xét 2 \(\Delta\) \(DBC\) và \(ECB\) có:
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
\(\widehat{xBC}=\widehat{C_1}=30^0\)
Cạnh BC chung
=> \(\Delta DBC=\Delta ECB\left(g-c-g\right).\)
=> \(CD=EB\) (2 cạnh tương ứng)
Ta có: \(AD=AC\left(gt\right)\)
=> \(A\) là trung điểm của \(CD.\)
=> \(AC=\frac{1}{2}CD\) (tính chất trung điểm)
Mà \(CD=EB\left(cmt\right)\)
=> \(AC=\frac{1}{2}EB\left(đpcm\right).\)
Chúc bạn học tốt!
Bạn tham khảo ở đây:
Câu hỏi của Diem Quynh - Toán lớp 7 - Học toán với OnlineMath
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm